15,112 research outputs found

    An adaptive dynamical low-rank tensor approximation scheme for fast circuit simulation

    Get PDF
    Tensors, as higher order generalization of matrices, have received growing attention due to their readiness in representing multidimensional data intrinsic to numerous engineering problems. This paper develops an efficient and accurate dynamical update algorithm for the low-rank mode factors. By means of tangent space projection onto the low-rank tensor manifold, the repeated computation of a full tensor Tucker decomposition is replaced with a much simpler solution of nonlinear differential equations governing the tensor mode factors. A worked-out numerical example demonstrates the excellent efficiency and scalability of the proposed dynamical approximation scheme.postprin

    Highly Improved Staggered Quarks on the Lattice, with Applications to Charm Physics

    Get PDF
    We use perturbative Symanzik improvement to create a new staggered-quark action (HISQ) that has greatly reduced one-loop taste-exchange errors, no tree-level order a^2 errors, and no tree-level order (am)^4 errors to leading order in the quark's velocity v/c. We demonstrate with simulations that the resulting action has taste-exchange interactions that are at least 3--4 times smaller than the widely used ASQTAD action. We show how to estimate errors due to taste exchange by comparing ASQTAD and HISQ simulations, and demonstrate with simulations that such errors are no more than 1% when HISQ is used for light quarks at lattice spacings of 1/10 fm or less. The suppression of (am)^4 errors also makes HISQ the most accurate discretization currently available for simulating c quarks. We demonstrate this in a new analysis of the psi-eta_c mass splitting using the HISQ action on lattices where a m_c=0.43 and 0.66, with full-QCD gluon configurations (from MILC). We obtain a result of~111(5) MeV which compares well with experiment. We discuss applications of this formalism to D physics and present our first high-precision results for D_s mesons.Comment: 21 pages, 8 figures, 5 table

    l2Match: Optimization Techniques on Subgraph Matching Algorithm using Label Pair, Neighboring Label Index, and Jump-Redo method

    Full text link
    Graph database is designed to store bidirectional relationships between objects and facilitate the traversal process to extract a subgraph. However, the subgraph matching process is an NP-Complete problem. Existing solutions to this problem usually employ a filter-and-verification framework and a divide-and-conquer method. The filter-and-verification framework minimizes the number of inputs to the verification stage by filtering and pruning invalid candidates as much as possible. Meanwhile, subgraph matching is performed on the substructure decomposed from the larger graph to yield partial embedding. Subsequently, the recursive traversal or set intersection technique combines the partial embedding into a complete subgraph. In this paper, we first present a comprehensive literature review of the state-of-the-art solutions. l2Match, a subgraph isomorphism algorithm for small queries utilizing a Label-Pair Index and filtering method, is then proposed and presented as a proof of concept. Empirical experimentation shows that l2Match outperforms related state-of-the-art solutions, and the proposed methods optimize the existing algorithms.Comment: This short version of this article (6 pages) is accepted by ICEIC 202

    A dynamic multi-objective evolutionary algorithm based on polynomial regression and adaptive clustering

    Get PDF
    In this paper, a dynamic multi-objective evolutionary algorithm is proposed based on polynomial regression and adaptive clustering, called DMOEA-PRAC. As the Pareto-optimal solutions and fronts of dynamic multi-objective optimization problems (DMOPs) may dynamically change in the optimization process, two corresponding change response strategies are presented for the decision space and objective space, respectively. In the decision space, the potentially useful information contained in all historical populations is obtained by the proposed predictor based on polynomial regression, which extracts the linear or nonlinear relationship in the historical change. This predictor can generate good initial population for the new environment. In the objective space, in order to quickly adapt to the new environment, an adaptive reference vector regulator is designed in this paper based on K-means clustering for the complex changes of Pareto-optimal fronts, in which the adjusted reference vectors can effectively guide the evolution. Finally, DMOEA-PRAC is compared with some recently proposed dynamic multi-objective evolutionary algorithms and the experimental results verify the effectiveness of DMOEA-PRAC in dealing with a variety of DMOPs

    Robust Integrated Data and Energy Transfer Aided by Intelligent Reflecting Surfaces: Successive Target Migration Optimization Towards Energy Sustainability

    Get PDF
    Intelligent reflecting surfaces (IRSs) can actively adjust the wireless environment. However, accurate channel estimation on IRS-aided communication systems is difficult to obtain. Therefore, we study a robust beamforming design for an IRS-aided integrated data and energy transfer (IDET) with imperfect channel state information (CSI). Against the uncertain channel estimation error, we robustly design the transmit beamformers of the transmitter and the passive reflecting beamformer of the IRS to minimize the transmit power by satisfying both the wireless data transfer (WDT) and wireless energy transfer (WET) requirements for realising energy-sustainability in 6G. A successive target migration optimization (STMO) algorithm is proposed to obtain a robust design. The transmit covariance matrices are optimized by relaxing rank-one constraints, when a passive reflecting beamformer is given. Then, the target to minimize the transmit power is migrated to maximize the QoS requirements of energy users due to the fixed transmit power. A local optimal reflecting beamformer is obtained for improving the attainable WET performance, when the transmit covariance matrices are given. Finally, we prove that the rank-one transmit beamformers can always be found, which have the same WET and WDT performance as the transmit covariance matrices. The numerical results demonstrate the advantage of our design

    Efficient mining of pan-correlation patterns from time course data

    Full text link
    © Springer International Publishing AG 2016. There are different types of correlation patterns between the variables of a time course data set, such as positive correlations, negative correlations, time-lagged correlations, and those correlations containing small interrupted gaps. Usually, these correlations are maintained only on a subset of time points rather than on the whole span of the time points which are traditionally required for correlation definition. As these types of patterns underline different trends of data movement, mining all of them is an important step to gain a broad insight into the dependencies of the variables. In this work, we prove that these diverse types of correlation patterns can be all represented by a generalized form of positive correlation patterns. We also prove a correspondence between positive correlation patterns and sequential patterns. We then present an efficient single-scan algorithm for mining all of these types of correlations. This “pan-correlation” mining algorithm is evaluated on synthetic time course data sets, as well as on yeast cell cycle gene expression data sets. The results indicate that: (i) our mining algorithm has linear time increment in terms of increasing number of variables; (ii) negative correlation patterns are abundant in real-world data sets; and (iii) correlation patterns with time lags and gaps are also abundant. Existing methods have only discovered incomplete forms of many of these patterns, and have missed some important patterns completely

    Discovering pan-correlation patterns from time course data sets by efficient mining algorithms

    Full text link
    © 2018, Springer-Verlag GmbH Austria, part of Springer Nature. Time-course correlation patterns can be positive or negative, and time-lagged with gaps. Mining all these correlation patterns help to gain broad insights on variable dependencies. Here, we prove that diverse types of correlation patterns can be represented by a generalized form of positive correlation patterns. We prove a correspondence between positive correlation patterns and sequential patterns, and present an efficient single-scan algorithm for mining the correlations. Evaluations on synthetic time course data sets, and yeast cell cycle gene expression data sets indicate that: (1) the algorithm has linear time increment in terms of increasing number of variables; (2) negative correlation patterns are abundant in real-world data sets; and (3) correlation patterns with time lags and gaps are abundant. Existing methods have only discovered incomplete forms of many of these patterns, and have missed some important patterns completely
    • …
    corecore