4 research outputs found

    Resetting Cell Fate by Epigenetic Reprogramming

    Get PDF
    Epigenetic modifications and their regulations govern the identity of every cell type in an organism. Cell differentiation involves a switch in gene expression profile that is accompanied by heritable changes of epigenetic signatures in the differentiated cell type. Differentiation is generally not reversible, thereby conferring cell fate decisions once an altered epigenetic pattern is set. Nevertheless, attempts have been made to reverse a differentiation cell fate to a pluripotent state by various experimental approaches, such as somatic cell nuclear transfer, cell fusion and ectopic expression of defined transcription factors. The fundamental basis of all these strategies is to mediate epigenetic reprogramming, which allows a permanent and completed conversion of cell fate. A comprehensive understanding of the dynamic of epigenetic changes during cell differentiation would provide a more precise and efficient way of reprogramming cell fate. Here we summarize the epigenetic aspects of different reprogramming strategies and discuss the possible mechanisms underlying these epigenetic reprogramming events

    Hoxb3 mutation leads to interleukin-6 dependent plasmacytoma

    No full text
    abstractpublished_or_final_versionBiochemistryMasterMaster of Philosoph
    corecore