228 research outputs found
Effects of "second-hand" smoke on structure and function of fibroblasts, cells that are critical for tissue repair and remodeling
BACKGROUND: It is known that "second-hand" cigarette smoke leads to abnormal tissue repair and remodelling but the cellular mechanisms involved in these adverse effects are not well understood. Fibroblasts play a major role in repair and remodelling. They orchestrate these processes by proliferating, migrating, and secreting proteins such as, cytokines, growth factors and extracellular matrix molecules. Therefore, we focus our studies on the effects of "second-hand" cigarette smoke on the structure and function of these cells. RESULTS: We used sidestream whole (SSW) smoke, a major component of "second-hand" smoke, primary embryonic fibroblasts, cells that behave very much like wound fibroblasts, and a variety of cellular and molecular approaches. We show that doses of smoke similar to those found in tissues cause cytoskeletal changes in the fibroblasts that may lead to a decrease in cell migration. In addition, we also show that these levels of cigarette smoke stimulate an increase in cell survival that is reflected in an increase and/or activation of stress/survival proteins such as cIL-8, grp78, PKB/Akt, p53, and p21. We further show that SSW affects the endomembrane system and that this effect is also accomplished by nicotine alone. CONCLUSIONS: Taken together, our results suggest that: (i) SSW may delay wound repair because of the inability of the fibroblasts to migrate into the wounded area, leading to an accumulation of these cells at the edge of the wound, thus preventing the formation of the healing tissue; (ii) the increase in cell survival coupled to the decrease in cell migration can lead to a build-up of connective tissue, thereby causing fibrosis and excess scarring
The effects of second-hand smoke on biological processes important in atherogenesis
BACKGROUND: Atherosclerosis is the leading cause of death in western societies and cigarette smoke is among the factors that strongly contribute to the development of this disease. The early events in atherogenesis are stimulated on the one hand by cytokines that chemoattract leukocytes and on the other hand by decrease in circulating molecules that protect endothelial cells (ECs) from injury. Here we focus our studies on the effects of "second-hand" smoke on atherogenesis. METHODS: To perform these studies, a smoking system that closely simulates exposure of humans to second-hand smoke was developed and a mouse model system transgenic for human apoB(100 )was used. These mice have moderate lipid levels that closely mimic human conditions that lead to atherosclerotic plaque formation. RESULTS: "Second-hand" cigarette smoke decreases plasma high density lipoprotein levels in the blood and also decreases the ratios between high density lipoprotein and low density lipoprotein, high density lipoprotein and triglyceride, and high density lipoprotein and total cholesterol. This change in lipid profiles causes not only more lipid accumulation in the aorta but also lipid deposition in many of the smaller vessels of the heart and in hepatocytes. In addition, mice exposed to smoke have increased levels of Monocyte Chemoattractant Protein–1 in circulation and in the heart/aorta tissue, have increased macrophages in the arterial walls, and have decreased levels of adiponectin, an EC-protective protein. Also, cytokine arrays revealed that mice exposed to smoke do not undergo the switch from the pro-inflammatory cytokine profile (that develops when the mice are initially exposed to second-hand smoke) to the adaptive response. Furthermore, triglyceride levels increase significantly in the liver of smoke-exposed mice. CONCLUSION: Long-term exposure to "second-hand" smoke creates a state of permanent inflammation and an imbalance in the lipid profile that leads to lipid accumulation in the liver and in the blood vessels of the heart and aorta. The former potentially can lead to non-alcoholic fatty liver disease and the latter to heart attacks
Uncovering packaging features of co-regulated modules based on human protein interaction and transcriptional regulatory networks
<p>Abstract</p> <p>Background</p> <p>Network co-regulated modules are believed to have the functionality of packaging multiple biological entities, and can thus be assumed to coordinate many biological functions in their network neighbouring regions.</p> <p>Results</p> <p>Here, we weighted edges of a human protein interaction network and a transcriptional regulatory network to construct an integrated network, and introduce a probabilistic model and a bipartite graph framework to exploit human co-regulated modules and uncover their specific features in packaging different biological entities (genes, protein complexes or metabolic pathways). Finally, we identified 96 human co-regulated modules based on this method, and evaluate its effectiveness by comparing it with four other methods.</p> <p>Conclusions</p> <p>Dysfunctions in co-regulated interactions often occur in the development of cancer. Therefore, we focussed on an example co-regulated module and found that it could integrate a number of cancer-related genes. This was extended to causal dysfunctions of some complexes maintained by several physically interacting proteins, thus coordinating several metabolic pathways that directly underlie cancer.</p
Artemisinin-Naphthoquine versus Artemether-Lumefantrine for Uncomplicated Malaria in Papua New Guinean Children: An Open-Label Randomized Trial
© 2014 Laman et al. Artemisinin combination therapies (ACTs) with broad efficacy are needed where multiple Plasmodium species are transmitted, especially in children, who bear the brunt of infection in endemic areas. In Papua New Guinea (PNG), artemether-lumefantrine is the first-line treatment for uncomplicated malaria, but it has limited efficacy against P. vivax. Artemisinin-naphthoquine should have greater activity in vivax malaria because the elimination of naphthoquine is slower than that of lumefantrine. In this study, the efficacy, tolerability, and safety of these ACTs were assessed in PNG children aged 0.5–5 y.An open-label, randomized, parallel-group trial of artemether-lumefantrine (six doses over 3 d) and artemisinin-naphthoquine (three daily doses) was conducted between 28 March 2011 and 22 April 2013. Parasitologic outcomes were assessed without knowledge of treatment allocation. Primary endpoints were the 42-d P. falciparum PCR-corrected adequate clinical and parasitologic response (ACPR) and the P. vivax PCR-uncorrected 42-d ACPR. Non-inferiority and superiority designs were used for falciparum and vivax malaria, respectively. Because the artemisinin-naphthoquine regimen involved three doses rather than the manufacturer-specified single dose, the first 188 children underwent detailed safety monitoring. Of 2,542 febrile children screened, 267 were randomized, and 186 with falciparum and 47 with vivax malaria completed the 42-d follow-up. Both ACTs were safe and well tolerated. P. falciparum ACPRs were 97.8% and 100.0% in artemether-lumefantrine and artemisinin-naphthoquine-treated patients, respectively (difference 2.2% [95% CI -3.0% to 8.4%] versus -5.0% non-inferiority margin, p?=?0.24), and P. vivax ACPRs were 30.0% and 100.0%, respectively (difference 70.0% [95% CI 40.9%–87.2%], p<0.001). Limitations included the exclusion of 11% of randomized patients with sub-threshold parasitemias on confirmatory microscopy and direct observation of only morning artemether-lumefantrine dosing.Artemisinin-naphthoquine is non-inferior to artemether-lumefantrine in PNG children with falciparum malaria but has greater efficacy against vivax malaria, findings with implications in similar geo-epidemiologic settings within and beyond Oceania.Australian New Zealand Clinical Trials Registry ACTRN12610000913077.Please see later in the article for the Editors' Summary
Epigenetic Silencing of Peroxisome Proliferator-Activated Receptor γ Is a Biomarker for Colorectal Cancer Progression and Adverse Patients' Outcome
The relationship between peroxisome proliferator-activated receptor γ (PPARG) expression and epigenetic changes occurring in colorectal-cancer pathogenesis is largely unknown. We investigated whether PPARG is epigenetically regulated in colorectal cancer (CRC) progression. PPARG expression was assessed in CRC tissues and paired normal mucosa by western blot and immunohistochemistry and related to patients' clinicopathological parameters and survival. PPARG promoter methylation was analyzed by methylation-specific-PCR and bisulphite sequencing. PPARG expression and promoter methylation were similarly examined also in CRC derived cell lines. Chromatin immunoprecipitation in basal conditions and after epigenetic treatment was performed along with knocking-down experiments of putative regulatory factors. Gene expression was monitored by immunoblotting and functional assays of cell proliferation and invasiveness. Methylation on a specific region of the promoter is strongly correlated with PPARG lack of expression in 30% of primary CRCs and with patients' poor prognosis. Remarkably, the same methylation pattern is found in PPARG-negative CRC cell lines. Epigenetic treatment with 5′-aza-2′-deoxycytidine can revert this condition and, in combination with trichostatin A, dramatically re-activates gene transcription and receptor activity. Transcriptional silencing is due to the recruitment of MeCP2, HDAC1 and EZH2 that impart repressive chromatin signatures determining an increased cell proliferative and invasive potential, features that can experimentally be reverted. Our findings provide a novel mechanistic insight into epigenetic silencing of PPARG in CRC that may be relevant as a prognostic marker of tumor progression
Head & neck optical diagnostics: vision of the future of surgery
Review paper and Proceedings of the Inaugural Meeting of the Head and Neck Optical Diagnostics Society (HNODS) on March 14th 2009 at University College London
The future of medical diagnostics: Review paper
While histopathology of excised tissue remains the gold standard for diagnosis, several new, non-invasive diagnostic techniques are being developed. They rely on physical and biochemical changes that precede and mirror malignant change within tissue. The basic principle involves simple optical techniques of tissue interrogation. Their accuracy, expressed as sensitivity and specificity, are reported in a number of studies suggests that they have a potential for cost effective, real-time, in situ diagnosis. We review the Third Scientific Meeting of the Head and Neck Optical Diagnostics Society held in Congress Innsbruck, Innsbruck, Austria on the 11th May 2011. For the first time the HNODS Annual Scientific Meeting was held in association with the International Photodynamic Association (IPA) and the European Platform for Photodynamic Medicine (EPPM). The aim was to enhance the interdisciplinary aspects of optical diagnostics and other photodynamic applications. The meeting included 2 sections: oral communication sessions running in parallel to the IPA programme and poster presentation sessions combined with the IPA and EPPM posters sessions. © 2011 Jerjes et al; licensee BioMed Central Ltd
Effect of Deutetrabenazine on Chorea Among Patients With Huntington Disease A Randomized Clinical Trial
Importance Deutetrabenazine is a novel molecule containing deuterium, which attenuates CYP2D6 metabolism and increases active metabolite half-lives and may therefore lead to stable systemic exposure while preserving key pharmacological activity.
Objective To evaluate efficacy and safety of deutetrabenazine treatment to control chorea associated with Huntington disease.
Design, Setting, and Participants Ninety ambulatory adults diagnosed with manifest Huntington disease and a baseline total maximal chorea score of 8 or higher (range, 0-28; lower score indicates less chorea) were enrolled from August 2013 to August 2014 and randomized to receive deutetrabenazine (n = 45) or placebo (n = 45) in a double-blind fashion at 34 Huntington Study Group sites.
Interventions Deutetrabenazine or placebo was titrated to optimal dose level over 8 weeks and maintained for 4 weeks, followed by a 1-week washout.
Main Outcomes and Measures Primary end point was the total maximal chorea score change from baseline (the average of values from the screening and day-0 visits) to maintenance therapy (the average of values from the week 9 and 12 visits) obtained by in-person visits. This study was designed to detect a 2.7-unit treatment difference in scores. The secondary end points, assessed hierarchically, were the proportion of patients who achieved treatment success on the Patient Global Impression of Change (PGIC) and on the Clinical Global Impression of Change (CGIC), the change in 36-Item Short Form– physical functioning subscale score (SF-36), and the change in the Berg Balance Test.
Results Ninety patients with Huntington disease (mean age, 53.7 years; 40 women [44.4%]) were enrolled. In the deutetrabenazine group, the mean total maximal chorea scores improved from 12.1 (95% CI, 11.2-12.9) to 7.7 (95% CI, 6.5-8.9), whereas in the placebo group, scores improved from 13.2 (95% CI, 12.2-14.3) to 11.3 (95% CI, 10.0-12.5); the mean between-group difference was –2.5 units (95% CI, –3.7 to –1.3) (P < .001). Treatment success, as measured by the PGIC, occurred in 23 patients (51%) in the deutetrabenazine group vs 9 (20%) in the placebo group (P = .002). As measured by the CGIC, treatment success occurred in 19 patients (42%) in the deutetrabenazine group vs 6 (13%) in the placebo group (P = .002). In the deutetrabenazine group, the mean SF-36 physical functioning subscale scores decreased from 47.5 (95% CI, 44.3-50.8) to 47.4 (44.3-50.5), whereas in the placebo group, scores decreased from 43.2 (95% CI, 40.2-46.3) to 39.9 (95% CI, 36.2-43.6), for a treatment benefit of 4.3 (95% CI, 0.4 to 8.3) (P = .03). There was no difference between groups (mean difference of 1.0 unit; 95% CI, –0.3 to 2.3; P = .14), for improvement in the Berg Balance Test, which improved by 2.2 units (95% CI, 1.3-3.1) in the deutetrabenazine group and by 1.3 units (95% CI, 0.4-2.2) in the placebo group. Adverse event rates were similar for deutetrabenazine and placebo, including depression, anxiety, and akathisia.
Conclusions and Relevance Among patients with chorea associated with Huntington disease, the use of deutetrabenazine compared with placebo resulted in improved motor signs at 12 weeks. Further research is needed to assess the clinical importance of the effect size and to determine longer-term efficacy and safety
- …