5,666 research outputs found

    Effects of Hydrogen vs. Helium on Electromagnetic Black Hole Observables

    Full text link
    The centers of our galaxy and the nearby Messier 87 are known to contain supermassive black holes, which support accretion flows that radiate across the electromagnetic spectrum. Although the composition of the accreting gas is unknown, it is likely a mix of ionized hydrogen and helium. We use a simple analytic model and a suite of numerical general relativistic magnetohydrodynamic accretion simulations to study how polarimetric images and spectral energy distributions of the source are influenced by the hydrogen/helium content of the accreting matter. We aim to identify general trends rather than make quantitatively precise predictions, since it is not possible to fully explore the parameter space of accretion models. If the ion-to-electron temperature ratio is fixed, then increasing the helium fraction increases the gas temperature; to match the observational flux density constraints, the number density of electrons and magnetic field strengths must therefore decrease. In our numerical simulations, emission shifts from regions of low to high plasma beta -- both altering the morphology of the image and decreasing the variability of the light curve -- especially in strongly magnetized models with emission close to the midplane. In polarized images, we find that the model gas composition influences the degree to which linear polarization is (de)scrambled and therefore affects estimates for the resolved linear polarization fraction. We also find that the spectra of helium-composition flows peak at higher frequencies and exhibit higher luminosities. We conclude that gas composition may play an important role in predictive models for black hole accretion.Comment: 17 pages, 8 figures, accepted for publication in Ap

    Black Hole Polarimetry I: A Signature of Electromagnetic Energy Extraction

    Full text link
    In 1977, Blandford and Znajek showed that the electromagnetic field surrounding a rotating black hole can harvest its spin energy and use it to power a collimated astrophysical jet, such as the one launched from the center of the elliptical galaxy M87. Today, interferometric observations with the Event Horizon Telescope (EHT) are delivering high-resolution, event-horizon-scale, polarimetric images of the supermassive black hole M87* at the jet launching point. These polarimetric images offer an unprecedented window into the electromagnetic field structure around a black hole. In this paper, we show that a simple polarimetric observable that quantifies the magnetic field helicity -- the sign of ∠β2\angle\beta_2 in a near-horizon image -- depends on the sign of the electromagnetic energy flux and therefore provides a direct probe of black hole energy extraction. In Boyer-Lindquist coordinates, the Poynting flux for axisymmetric electromagnetic fields is proportional to the product BϕBrB^\phi B^r. The polarimetric observable ∠β2\angle\beta_2 likewise depends on the ratio Bϕ/BrB^\phi/B^r, thereby enabling an observer to experimentally determine the direction of electromagnetic energy flow in the near-horizon environment. Data from the 2017 EHT observations of M87* are consistent with electromagnetic energy outflow. Currently envisioned multi-frequency observations of M87* will achieve higher dynamic range and angular resolution, and hence deliver measurements of ∠β2\angle\beta_2 closer to the event horizon as well as better constraints on Faraday rotation. Such observations will enable a definitive test for energy extraction from the black hole M87*.Comment: 34 pages, 5 figures. Submitted to ApJ

    Photon Ring Autocorrelations

    Full text link
    In the presence of a black hole, light sources connect to observers along multiple paths. As a result, observed brightness fluctuations must be correlated across different times and positions in black hole images. Photons that execute multiple orbits around the black hole appear near a critical curve in the observer sky, giving rise to the photon ring. In this paper, a novel observable is proposed: the two-point correlation function of intensity fluctuations on the photon ring. This correlation function is analytically computed for a Kerr black hole surrounded by stochastic equatorial emission, with source statistics motivated by simulations of a turbulent accretion flow. It is shown that this two-point function exhibits a universal, self-similar structure consisting of multiple peaks of identical shape: while the profile of each peak encodes statistical properties of fluctuations in the source, the locations and heights of the peaks are determined purely by the black hole parameters. Measuring these peaks would demonstrate the existence of the photon ring without resolving its thickness, and would provide estimates of black hole mass and spin. With regular monitoring over sufficiently long timescales, this measurement could be possible via interferometric imaging with modest improvements to the Event Horizon Telescope.Comment: 31 pages, 3 figure

    Demonstrating Photon Ring Existence with Single-Baseline Polarimetry

    Full text link
    Images of supermassive black hole accretion flows contain features of both curved spacetime and plasma structure. Inferring properties of the spacetime from images requires modeling the plasma properties, and vice versa. The Event Horizon Telescope Collaboration has imaged near-horizon millimeter emission from both Messier 87* (M87*) and Sagittarius A* (Sgr A*) with very-long-baseline interferometry (VLBI) and has found a preference for magnetically arrested disk (MAD) accretion in each case. MAD accretion enables spacetime measurements through future observations of the photon ring, the image feature composed of near-orbiting photons. The ordered fields and relatively weak Faraday rotation of MADs yield rotationally symmetric polarization when viewed at modest inclination. In this letter, we utilize this symmetry along with parallel transport symmetries to construct a gain-robust interferometric quantity that detects the transition between the weakly lensed accretion flow image and the strongly lensed photon ring. We predict a shift in polarimetric phases on long baselines and demonstrate that the photon rings in M87* and Sgr A* can be unambiguously detected {with sensitive, long-baseline measurements. For M87* we find that photon ring detection in snapshot observations requires ∼1\sim1 mJy sensitivity on >15>15 Gλ\lambda baselines at 230 GHz and above, which could be achieved with space-VLBI or higher-frequency ground-based VLBI. For Sgr A*, we find that interstellar scattering inhibits photon ring detectability at 230 GHz, but ∼10\sim10 mJy sensitivity on >12>12 Gλ\lambda baselines at 345 GHz is sufficient, which is accessible from the ground. For both sources, these sensitivity requirements may be relaxed by repeated observations and averaging.Comment: 14 pages, 7 figures, Accepted to ApJ

    Using Machine Learning to Link Black Hole Accretion Flows with Spatially Resolved Polarimetric Observables

    Full text link
    We introduce a new library of 535,194 model images of the supermassive black holes and Event Horizon Telescope (EHT) targets Sgr A* and M87*, computed by performing general relativistic radiative transfer calculations on general relativistic magnetohydrodynamics simulations. Then, to infer underlying black hole and accretion flow parameters (spin, inclination, ion-to-electron temperature ratio, and magnetic field polarity), we train a random forest machine learning model on various hand-picked polarimetric observables computed from each image. Our random forest is capable of making meaningful predictions of spin, inclination, and the ion-to-electron temperature ratio, but has more difficulty inferring magnetic field polarity. To disentangle how physical parameters are encoded in different observables, we apply two different metrics to rank the importance of each observable at inferring each physical parameter. Details of the spatially resolved linear polarization morphology stand out as important discriminators between models. Bearing in mind the theoretical limitations and incompleteness of our image library, for the real M87* data, our machinery favours high-spin retrograde models with large ion-to-electron temperature ratios. Due to the time-variable nature of these targets, repeated polarimetric imaging will further improve model inference as the EHT and next-generation (EHT) continue to develop and monitor their targets.Comment: 24 pages, 27 figure
    • …
    corecore