7,693 research outputs found

    A Formal, Resource Consumption-Preserving Translation of Actors to Haskell

    Get PDF
    We present a formal translation of an actor-based language with cooperative scheduling to the functional language Haskell. The translation is proven correct with respect to a formal semantics of the source language and a high-level operational semantics of the target, i.e. a subset of Haskell. The main correctness theorem is expressed in terms of a simulation relation between the operational semantics of actor programs and their translation. This allows us to then prove that the resource consumption is preserved over this translation, as we establish an equivalence of the cost of the original and Haskell-translated execution traces.Comment: Pre-proceedings paper presented at the 26th International Symposium on Logic-Based Program Synthesis and Transformation (LOPSTR 2016), Edinburgh, Scotland UK, 6-8 September 2016 (arXiv:1608.02534

    Tests of Two-Body Dirac Equation Wave Functions in the Decays of Quarkonium and Positronium into Two Photons

    Full text link
    Two-Body Dirac equations of constraint dynamics provide a covariant framework to investigate the problem of highly relativistic quarks in meson bound states. This formalism eliminates automatically the problems of relative time and energy, leading to a covariant three dimensional formalism with the same number of degrees of freedom as appears in the corresponding nonrelativistic problem. It provides bound state wave equations with the simplicity of the nonrelativistic Schroedinger equation. Here we begin important tests of the relativistic sixteen component wave function solutions obtained in a recent work on meson spectroscopy, extending a method developed previously for positronium decay into two photons. Preliminary to this we examine the positronium decay in the 3P_{0,2} states as well as the 1S_0. The two-gamma quarkonium decays that we investigate are for the \eta_{c}, \eta_{c}^{\prime}, \chi_{c0}, \chi_{c2}, \pi^{0}, \pi_{2}, a_{2}, and f_{2}^{\prime} mesons. Our results for the four charmonium states compare well with those from other quark models and show the particular importance of including all components of the wave function as well as strong and CM energy dependent potential effects on the norm and amplitude. The results for the \pi^{0}, although off the experimental rate by 15%, is much closer than the usual expectations from a potential model. We conclude that the Two-Body Dirac equations lead to wave functions which provide good descriptions of the two-gamma decay amplitude and can be used with some confidence for other purposes.Comment: 79 pages, included new sections on covariant scalar product and added pages on positronium decay for 3P0 and 3P_2 state

    Phase Identification of Smart Meters Using a Fourier Series Compression and a Statistical Clustering Algorithm

    Full text link
    Accurate labeling of phase connectivity in electrical distribution systems is important for maintenance and operations but is often erroneous or missing. In this paper, we present a process to identify which smart meters must be in the same phase using a hierarchical clustering method on voltage time series data. Instead of working with the time series data directly, we apply the Fourier transform to represent the data in their frequency domain, remove 98%98\% of the Fourier coefficients, and use the remaining coefficients to cluster the meters are in the same phase. Result of this process is validated by confirming that cluster (phase) membership of meters does not change over two monthly periods. In addition, we also confirm that meters that belong to the same feeder within the distribution network are correctly classified into the same cluster, that is, assigned to the same phase.Comment: 5 pages, 6 figures, 4 table

    Development of an EGFRvIII specific recombinant antibody

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>EGF receptor variant III (EGFRvIII) is the most common variant of the EGF receptor observed in human tumors. It results from the in frame deletion of exons 2-7 and the generation of a novel glycine residue at the junction of exons 1 and 8. This novel juxtaposition of amino acids within the extra-cellular domain of the EGF receptor creates a tumor specific and immunogenic epitope. EGFRvIII expression has been seen in many tumor types including glioblastoma multiforme (GBM), breast adenocarcinoma, non-small cell lung carcinoma, ovarian adenocarcinoma and prostate cancer, but has been rarely observed in normal tissue. Because this variant is tumor specific and highly immunogenic, it can be used for both a diagnostic marker as well as a target for immunotherapy. Unfortunately many of the monoclonal and polyclonal antibodies directed against EGFRvIII have cross reactivity to wild type EGFR or other non-specific proteins. Furthermore, a monoclonal antibody to EGFRvIII is not readily available to the scientific community.</p> <p>Results</p> <p>In this study, we have developed a recombinant antibody that is specific for EGFRvIII, has little cross reactivity for the wild type receptor, and which can be easily produced. We initially designed a recombinant antibody with two anti-EGFRvIII single chain Fv's linked together and a human IgG1 Fc component. To enhance the specificity of this antibody for EGFRvIII, we mutated tyrosine H59 of the CDRH2 domain and tyrosine H105 of the CDRH3 domain to phenylalanine for both the anti-EGFRvIII sequence inserts. This mutated recombinant antibody, called RAb<sup>DMvIII</sup>, specifically detects EGFRvIII expression in EGFRvIII expressing cell lines as well as in EGFRvIII expressing GBM primary tissue by western blot, immunohistochemistry (IHC) and immunofluorescence (IF) and FACS analysis. It does not recognize wild type EGFR in any of these assays. The affinity of this antibody for EGFRvIII peptide is 1.7 × 10<sup>7 </sup>M<sup>-1 </sup>as determined by enzyme-linked immunosorbent assay (ELISA).</p> <p>Conclusion</p> <p>This recombinant antibody thus holds great potential to be used as a research reagent and diagnostic tool in research laboratories and clinics because of its high quality, easy viability and unique versatility. This antibody is also a strong candidate to be investigated for further in vivo therapeutic studies.</p

    The development and validation of a fast and robust dried blood spot based lipid profiling method to study infant metabolism.

    Get PDF
    Early life exposures and metabolic programming are associated with later disease risk. In particular lipid metabolism is thought to play a key role in the development of the metabolic syndrome and insulin resistance in later life. Investigative studies of metabolic programming are limited by the ethics and practicalities of sample collection in small infants. Dried blood spots on filter paper, derived from heel pricks are considered as the most suitable option for this age group. We validated a novel lipid profiling method, based on high resolution mass spectrometry to successfully determine the lipid composition of infants using dried blood spots. The spotting and air drying of blood on paper has noticeable effects on many of the lipids, leading to lipid oxidation and hydrolysis, which demand careful interpretation of the obtained data. We compared the lipid profiles from plasma or whole blood samples and the results from dried blood spots to determine if these revealed the same inter-subject differences. The results from dried blood spots were no less reproducible than other lipid profiling methods which required comparatively larger sample volumes. Therefore, lipid profiles obtained from dried blood spots can be successfully used to monitor infancy lipid metabolism and we show significant differences in the lipid metabolism of infants at age 3 versus 12 months

    Random Geometric Graphs

    Full text link
    We analyse graphs in which each vertex is assigned random coordinates in a geometric space of arbitrary dimensionality and only edges between adjacent points are present. The critical connectivity is found numerically by examining the size of the largest cluster. We derive an analytical expression for the cluster coefficient which shows that the graphs are distinctly different from standard random graphs, even for infinite dimensionality. Insights relevant for graph bi-partitioning are included.Comment: 16 pages, 10 figures. Minor changes. Added reference

    Beta1 integrins modulate cell adhesion by regulating insulin-like growth factor-II levels in the microenvironment

    Get PDF
    The interactions between cancer cells and the extracellular matrix (ECM) regulate cancer progression. The beta1C and beta1A integrins, two cytoplasmic variants of the beta1 integrin subfamily, are differentially expressed in prostate cancer. Using gene expression analysis, we show here that the beta1C variant, an inhibitor of cell proliferation, which is down-regulated in prostate cancer, up-regulates insulin-like growth factor-II (IGF-II) mRNA and protein levels. In contrast, beta1A does not affect IGF-II levels. We provide evidence that beta1C-mediated up-regulation of IGF-II levels increases adhesion to Laminin-1, a basement membrane protein down-regulated in prostate cancer, and that the beta1C cytoplasmic domain contains the structural motif sufficient to increase cell adhesion to Laminin-1. This autocrine mechanism that locally supports cell adhesion to Laminin-1 via IGF-II is selectively regulated by the beta1 cytoplasmic domain via activation of the growth factor receptor binding protein 2-associated binder-1/SH2-containing protein-tyrosine phosphatase 2/phosphatidylinositol 3-kinase pathway. Thus, the concurrent local loss of beta1C integrin, of its ligand Laminin-1, and of IGF-II in the tumor microenvironment may promote prostate cancer cell invasion and metastasis by reducing cancer cell adhesive properties. It is, therefore, conceivable that reexpression of beta1C will be sufficient to revert a neoplastic phenotype to a nonproliferative and highly adherent normal phenotype

    Facing the threat of influenza pandemic - roles of and implications to general practitioners

    Get PDF
    The 2009 pandemic of H1N1 influenza, compounded with seasonal influenza, posed a global challenge. Despite the announcement of post-pandemic period on 10 August 2010 by theWHO, H1N1 (2009) virus would continue to circulate as a seasonal virus for some years and national health authorities should remain vigilant due to unpredictable behaviour of the virus. Majority of the world population is living in countries with inadequate resources to purchase vaccines and stockpile antiviral drugs. Basic hygienic measures such as wearing face masks and the hygienic practice of hand washing could reduce the spread of the respiratory viruses. However, the imminent issue is translating these measures into day-to-day practice. The experience from Severe Acute Respiratory Syndrome (SARS) in Hong Kong has shown that general practitioners (GPs) were willing to discharge their duties despite risks of getting infected themselves. SARS event has highlighted the inadequate interface between primary and secondary care and valuable health care resources were thus inappropriately matched to community needs

    Measuring the dark side (with weak lensing)

    Full text link
    We introduce a convenient parametrization of dark energy models that is general enough to include several modified gravity models and generalized forms of dark energy. In particular we take into account the linear perturbation growth factor, the anisotropic stress and the modified Poisson equation. We discuss the sensitivity of large scale weak lensing surveys like the proposed DUNE satellite to these parameters. We find that a large-scale weak-lensing tomographic survey is able to easily distinguish the Dvali-Gabadadze-Porrati model from LCDM and to determine the perturbation growth index to an absolute error of 0.02-0.03.Comment: 19 pages, 11 figure

    Slowly evolving random graphs II: Adaptive geometry in finite-connectivity Hopfield models

    Full text link
    We present an analytically solvable random graph model in which the connections between the nodes can evolve in time, adiabatically slowly compared to the dynamics of the nodes. We apply the formalism to finite connectivity attractor neural network (Hopfield) models and we show that due to the minimisation of the frustration effects the retrieval region of the phase diagram can be significantly enlarged. Moreover, the fraction of misaligned spins is reduced by this effect, and is smaller than in the infinite connectivity regime. The main cause of this difference is found to be the non-zero fraction of sites with vanishing local field when the connectivity is finite.Comment: 17 pages, 8 figure
    • 

    corecore