26 research outputs found

    Biochemical and Biological in vivo Functions of Dna2p in Saccharomyces cerevisiae

    Get PDF
    We have characterized a temperature-sensitive yeast mutant, dna2ts, which is defective in DNA replication. DNA2 is essential and encodes a 172-kDa protein with a DNA helicase motif at its C-terminal portion. A homology search showed that Dna2p is conserved structurally among species. Even Xenopus laevis Dna2 was able to complement an S. cerevisiae dna2-1 mutant strain for growth at the nonpermissive temperature, suggesting that Dna2p is conserved also functionally. The site of the dna2-1 mutation was mapped using a marker rescue technique and turned out proline 504 to serine, placing the dna2-1 mutation in the N-terminal portion of the protein, suggesting that N-terminal portion of the protein is important for the activity of Dna2p. Recombinant ScDna2p was expressed in insect cells and purified. With the purified protein, we were able to demonstrate that Dna2p was a single-stranded DNA endonuclease/helicase and a single stranded DNA dependent ATPase, suggesting that Dna2p has various biochemical functions. We also found that Dna2 helicase-nuclease is a component of telomeric chromatin. Both chromatin immunoprecipitation and immunofluorescence showed that Dna2p associates with telomeres but not the bulk of chromosomal DNA in G1 phase. In S phase, there is a dramatic redistribution ofDna2p from the telomeres to sites throughout replicating chromosomes. Dna2p is again localized to telomeres in late S, where it remains through G2 and until the next S phase. Telomeric localization of Dna2p required Sir3p, since the amount ofDna2p found at telomeres by two different assays, one hybrid and ChIP, is severely reduced in strains lacking Sir3p. The Dna2p is also distributed throughout the nucleus in cells growing in the presence of DSB-inducing agents such as bleomycin. Finally, we show that Dna2p is functionally required for telomerase-dependent de novo telomere synthesis and also participates in telomere lengthening in mutants lacking telomerase, and that genetic instability due to dna2 mutations lead to premature aging phenotype.</p

    Dynamic Localization of an Okazaki Fragment Processing Protein Suggests a Novel Role in Telomere Replication

    Get PDF
    We have found that the Dna2 helicase-nuclease, thought to be involved in maturation of Okazaki fragments, is a component of telomeric chromatin. We demonstrate a dynamic localization of Dna2p to telomeres that suggests a dual role for Dna2p, one in telomere replication and another, unknown function, perhaps in telomere capping. Both chromatin immunoprecipitation (ChIP) and immunofluorescence show that Dna2p associates with telomeres but not bulk chromosomal DNA in G(1) phase, when there is no telomere replication and the telomere is transcriptionally silenced. In S phase, there is a dramatic redistribution of Dna2p from telomeres to sites throughout the replicating chromosomes. Dna2p is again localized to telomeres in late S, where it remains through G(2) and until the next S phase. Telomeric localization of Dna2p required Sir3p, since the amount of Dna2p found at telomeres by two different assays, one-hybrid and ChIP, is severely reduced in strains lacking Sir3p. The Dna2p is also distributed throughout the nucleus in cells growing in the presence of double-strand-break-inducing agents such as bleomycin. Finally, we show that Dna2p is functionally required for telomerase-dependent de novo telomere synthesis and also participates in telomere lengthening in mutants lacking telomerase

    Mutations in DNA Replication Genes Reduce Yeast Life Span

    Get PDF
    Surprisingly, the contribution of defects in DNA replication to the determination of yeast life span has never been directly investigated. We show that a replicative yeast helicase/nuclease, encoded by DNA2 and a member of the same helicase subfamily as the RecQ helicases, is required for normal life span. All of the phenotypes of old wild-type cells, for example, extended cell cycle time, age-related transcriptional silencing defects, and nucleolar reorganization, occur after fewer generations in dna2 mutants than in the wild type. In addition, the life span of dna2 mutants is extended by expression of an additional copy of SIR2 or by deletion of FOB1, which also increase wild-type life span. The ribosomal DNA locus and the nucleolus seem to be particularly sensitive to defects in dna2 mutants, although in dna2 mutants extrachromosomal ribosomal circles do not accumulate during the aging of a mother cell. Several other replication mutations, such as rad27Δ, encoding the FEN-1 nuclease involved in several aspects of genomic stability, also show premature aging. We propose that replication fork failure due to spontaneous, endogenous DNA damage and attendant genomic instability may contribute to replicative senescence. This may imply that the genomic instability, segmental premature aging symptoms, and cancer predisposition associated with the human RecQ helicase diseases, such as Werner, Bloom, and Rothmund-Thomson syndromes, are also related to replicative stress

    AMP-activated protein kinase determines apoptotic sensitivity of cancer cells to ginsenoside-Rh2

    Get PDF
    Ginseng saponins exert various important pharmacological effects with regard to the control of many diseases, including cancer. In this study, the anticancer effect of ginsenosides on human cancer cells was investigated and compared. Among the tested compounds, ginsenoside-Rh2 displays the highest inhibitory effect on cell viability in HepG2 cells. Ginsenoside-Rh2, a ginseng saponin isolated from the root of Panax ginseng, has been suggested to have potential as an anticancer agent, but the underlying mechanisms remain elusive. In the present study, we have shown that cancer cells have differential sensitivity to ginsenoside-Rh2-induced apoptosis, raising questions regarding the specific mechanisms responsible for the discrepant sensitivity to ginsenoside-Rh2. In this study, we demonstrate that AMP-activated protein kinase (AMPK) is a survival factor under ginsenoside-Rh2 treatment in cancer cells. Cancer cells with acute responsiveness of AMPK display a relative resistance to ginsenoside-Rh2, but cotreatment with AMPK inhibitor resulted in a marked increase of ginsenoside-Rh2-induced apoptosis. We also observed that p38 MAPK (mitogen-activated protein kinase) acts as another survival factor under ginsenoside-Rh2 treatment, but there was no signaling crosstalk between AMPK and p38 MAPK, suggesting that combination with inhibitor of AMPK or p38 MAPK can augment the anticancer potential of ginsenoside Rh2

    Molecular Mechanisms for Ketone Body Metabolism, Signaling Functions, and Therapeutic Potential in Cancer

    No full text
    The ketone bodies (KBs) β-hydroxybutyrate and acetoacetate are important alternative energy sources for glucose during nutrient deprivation. KBs synthesized by hepatic ketogenesis are catabolized to acetyl-CoA through ketolysis in extrahepatic tissues, followed by the tricarboxylic acid cycle and electron transport chain for ATP production. Ketogenesis and ketolysis are regulated by the key rate-limiting enzymes, 3-hydroxy-3-methylglutaryl-CoA synthase 2 and succinyl-CoA:3-oxoacid-CoA transferase, respectively. KBs participate in various cellular processes as signaling molecules. KBs bind to G protein-coupled receptors. The most abundant KB, β-hydroxybutyrate, regulates gene expression and other cellular functions by inducing post-translational modifications. KBs protect tissues by regulating inflammation and oxidative stress. Recently, interest in KBs has been increasing due to their potential for treatment of various diseases such as neurological and cardiovascular diseases and cancer. Cancer cells reprogram their metabolism to maintain rapid cell growth and proliferation. Dysregulation of KB metabolism also plays a role in tumorigenesis in various types of cancer. Targeting metabolic changes through dietary interventions, including fasting and ketogenic diets, has shown beneficial effects in cancer therapy. Here, we review current knowledge of the molecular mechanisms involved in the regulation of KB metabolism and cellular signaling functions, and the therapeutic potential of KBs and ketogenic diets in cancer

    2-O-Methylhonokiol Suppresses HCV Replication via TRAF6-Mediated NF-kB Activation

    No full text
    Hepatitis C virus (HCV) is associated with various liver diseases. Chronic HCV infection is characterized by an abnormal host immune response. Therefore, it is speculated that to suppress HCV, a well-regulated host immune response is necessary. 2-O-methylhonokiol was identified by the screening of anti-HCV compounds using Renilla luciferase assay in Huh 7.5/Con 1 genotype 1b replicon cells. Here, we investigated the mechanism by which 2-O-methylhonokiol treatment inhibits HCV replication using real-time PCR. Our data shows that treatment with 2-O-methylhonokiol activated innate immune responses via nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) pathway. Additionally, the immunoprecipitation result shows that treatment with 2-O-methylhonokiol augmented tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6) by preventing p62 from binding to TRAF6, resulting in reduced autophagy caused by HCV. Finally, we reproduced our data with the conditioned media from 2-O-methylhonokiol-treated cells. These findings strongly suggest that 2-O-methylhonokiol enhances the host immune response and suppresses HCV replication via TRAF6-mediated NF-kB activation

    Jeju Magma-Seawater Inhibits α-MSH-Induced Melanogenesis via CaMKKβ-AMPK Signaling Pathways in B16F10 Melanoma Cells

    No full text
    Melanin protects skin from ultraviolet radiation, toxic drugs, and chemicals. Its synthesis is sophisticatedly regulated by multiple mechanisms, including transcriptional and enzymatic controls. However, uncontrolled excessive production of melanin can cause serious dermatological disorders, such as freckles, melasma, solar lentigo, and cancer. Moreover, melanogenesis disorders are also linked to neurodegenerative diseases. Therefore, there is a huge demand for safer and more potent inhibitors of melanogenesis. In the present study, we report novel inhibitory effects of Jeju magma-seawater (JMS) on melanogenesis induced by &alpha;-melanocyte stimulating hormone (&alpha;-MSH) in B16F10 melanoma cells. JMS is the abundant underground seawater found in Jeju Island, a volcanic island of Korea. Research into the physiological effects of JMS is rapidly increasing due to its high contents of various minerals that are essential to human health. However, little is known about the effects of JMS on melanogenesis. Here, we demonstrate that JMS safely and effectively inhibits &alpha;-MSH-induced melanogenesis via the CaMKK&beta; (calcium/calmodulin-dependent protein kinase &beta;)-AMPK (5&prime; adenosine monophosphate-activated protein kinase) signaling pathway. We further demonstrate that AMPK inhibits the signaling pathways of protein kinase A and MAPKs (mitogen-activated protein kinase), which are critical for melanogenesis-related gene expression. Our results highlight the potential of JMS as a novel therapeutic agent for ameliorating skin pigmentation-related disorders

    Correlation between Oxidative Stress and Transforming Growth Factor-Beta in Cancers

    No full text
    The downregulation of reactive oxygen species (ROS) facilitates precancerous tumor development, even though increasing the level of ROS can promote metastasis. The transforming growth factor-beta (TGF-β) signaling pathway plays an anti-tumorigenic role in the initial stages of cancer development but a pro-tumorigenic role in later stages that fosters cancer metastasis. TGF-β can regulate the production of ROS unambiguously or downregulate antioxidant systems. ROS can influence TGF-β signaling by enhancing its expression and activation. Thus, TGF-β signaling and ROS might significantly coordinate cellular processes that cancer cells employ to expedite their malignancy. In cancer cells, interplay between oxidative stress and TGF-β is critical for tumorigenesis and cancer progression. Thus, both TGF-β and ROS can develop a robust relationship in cancer cells to augment their malignancy. This review focuses on the appropriate interpretation of this crosstalk between TGF-β and oxidative stress in cancer, exposing new potential approaches in cancer biology

    Relationship between Brain Tissue Changes and Blood Biomarkers of Cyclophilin A, Heme Oxygenase-1, and Inositol-Requiring Enzyme 1 in Patients with Alzheimer’s Disease

    No full text
    Cyclophilin A (CypA), heme oxygenase-1 (HO-1), and inositol-requiring enzyme 1 (IRE1) are believed to be associated with Alzheimer’s disease (AD). In this study, we investigated the association between gray matter volume (GMV) changes and blood levels of CypA, HO-1, and IRE1 in cognitively normal (CN) subjects and those with amnestic mild cognitive impairment (aMCI) and AD. Forty-five elderly CN, 34 aMCI, and 39 AD subjects were enrolled in this study. The results of voxel-based multiple regression analysis showed that blood levels of CypA, HO-1, and IRE1 were correlated with GMV on brain magnetic resonance imaging (MRI) in the entire population (p = 0.0005). The three serum protein levels were correlated with GMV of signature AD regions in the population as a whole. CypA values increased with increasing GMV in the occipital gyrus (r = 0.387, p &lt; 0.0001) and posterior cingulate (r = 0.196, p = 0.034). HO-1 values increased with increasing GMV at the uncus (r = 0.307, p = 0.0008), lateral globus pallidus and putamen (r = 0.287, p = 0.002), and hippocampus (r = 0.197, p = 0.034). IRE1 values decreased with increasing GMV at the uncus (r = −0.239, p = 0.010) and lateral globus pallidus and putamen (r = −0.335, p = 0.0002). Associations between the three serum protein levels and regional GMV indicate that the blood levels of these biomarkers may reflect the pathological mechanism of AD in the brain
    corecore