1,217 research outputs found

    Analysis of the transient compressible vapor flow in heat pipe

    Get PDF
    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures

    Direct observation of a liquid film under a vapor environment in a pool boiling using a nanofluid

    Get PDF
    The existence of a liquid film separating a vapor bubble from a heated solid surface is confirmed using a nanofluid. The existence of such a liquid film had been a theoretical premise of the critical heat flux mechanism, significantly difficult to verify through experimental observations. Here, we show that a liquid film under a massive vapor bubble adheres to a heated solid surface. The liquid film comes into being trapped in a dynamic coalescence environment of nucleate bubbles, which grow and depart continuously from the heated surface. In its dryout process, the liquid film displays vapor "holes" originating from the rupture of discrete nucleating bubbles. The dryout process of the liquid film can be understood from the vaporization of rims of the holes and of smooth film region.open51
    corecore