9,431 research outputs found

    Partially composite 2-Higgs-doublet model

    Get PDF
    In the extra dimensional scenarios with gauge fields in the bulk, the Kaluza-Klein (KK) gauge bosons can induce Nambu-Jona-Lasinio (NJL) type attractive four-fermion interactions, which can break electroweak symmetry dynamically with accompanying composite Higgs fields. We consider a possibility that electroweak symmetry breaking (EWSB) is triggered by both a fundamental Higgs and a composite Higgs arising in a dynamical symmetry breaking mechanism induced by a new strong dynamics. The resulting Higgs sector is a partially composite two-Higgs doublet model with specific boundary conditions on the coupling and mass parameters originating at a compositeness scale Λ\Lambda. The phenomenology of this model is discussed including the collider phenomenology at LHC and ILC.Comment: To appear in the proceeding of LCWS06, Bangalore, Indi

    Out of plane optical conductivity in d-wave superconductors

    Full text link
    We study theoretically the out of plane optical conductivity of d-wave superconductors in the presence of impurities at T=0K. Unlike the usual approach, we assume that the interlayer quasi-particle transport is due to coherent tunneling. The present model describes the T^2 dependence of the out of plane superfluid density observed in YBCO and Tl2201 for example. In the optical conductivity there is no Drude peak in agreement with experiment, and the interlayer Josephson tunneling is also assured in this model. In the unitary limit we predict a step like behaviour around omega=Delta in both the real and imaginary part of the optical conductivity.Comment: 7 pages, 7 figure

    The magnetic field dependence of the threshold electric field in unconventional charge density waves

    Full text link
    Many experiments suggest that the unidentified low temperature phase (LTP) of alpha-(BEDT-TTF)_2KHg(SCN)_4 is most likely unconventional charge density wave (UCDW). To further this identification we present our theoretical study of the threshold electric field of UCDW in a magnetic field. The magnetic field-temperature phase diagram is very similar to those in a d-wave superconductor. We find a rather strong field dependence of the threshold electric field, which should be readily accessible experimentally.Comment: 7 pages, 6 figure

    Novel vortex lattice transition in d-wave superconductors

    Full text link
    We study the vortex state in a magnetic field parallel to the cc axis in the framework of the extended Ginzburg Landau equation. We find the vortex acquires a fourfold modulation proportional to cos(4ϕ)\cos(4\phi) where ϕ\phi is the angle r{\bf r} makes with the aa-axis. This term gives rise to an attractive interaction between two vortices when they are aligned parallel to (1,1,0)(1,1,0) or (1,1,0)(1,-1,0). We predict the first order vortex lattice transition at B=Hcrκ1Hc2(t)B=H_{cr}\sim \kappa^{-1} H_{c2}(t) from triangular into the square lattice tilted by 4545^\circ from the aa axis. This gives the critical field HcrH_{cr} a few Tesla for YBCO and Bi2212 monocrystals at low temperatures (T10KT\leq 10 K).Comment: 6 pages, 4 figure

    The Dynamical Behaviors in (2+1)-Dimensional Gross-Neveu Model with a Thirring Interaction

    Full text link
    We analyze (2+1)-dimensional Gross-Neveu model with a Thirring interaction, where a vector-vector type four-fermi interaction is on equal terms with a scalar-scalar type one. The Dyson-Schwinger equation for fermion self-energy function is constructed up to next-to-leading order in 1/N expansion. We determine the critical surface which is the boundary between a broken phase and an unbroken one in (αc, βc, Nc\alpha_c,~ \beta_c,~ N_c) space. It is observed that the critical behavior is mainly controlled by Gross-Neveu coupling αc\alpha_c and the region of the broken phase is separated into two parts by the line αc=αc(=8π2)\alpha_c=\alpha_c^*(=\frac{8}{\pi^2}). The mass function is strongly dependent upon the flavor number N for α>αc\alpha > \alpha_c^*, while weakly for ααc\alpha \alpha_c^*, the critical flavor number NcN_c increases as Thirring coupling β\beta decreases. By driving the CJT effective potential, we show that the broken phase is energetically preferred to the symmetric one. We discuss the gauge dependence of the mass function and the ultra-violet property of the composite operators.Comment: 19 pages, LaTex, 6 ps figure files(uuencoded in seperate file

    Exact solutions of charged wormhole

    Get PDF
    In this paper, the backreaction to the traversable Lorentzian wormhole spacetime by the scalar field or electric charge is considered to find the exact solutions. The charges play the role of the additional matter to the static wormhole which is already constructed by the exotic matter. The stability conditions for the wormhole with scalar field and electric charge are found from the positiveness and flareness for the wormhole shape function.Comment: 9 pages, Revtex, no figures, to appear in Phys. Rev. D(2001

    Singularity of the Vortex Density of States in d-wave Superconductors

    Full text link
    In d-wave superconductors, the electronic density of states (DOS) induced by a vortex exhibits 1/|E| divergency at low energies. It is the result of gap nodes in the excitations spectrum outside the vortex core. The heat capacity in two regimes, (T/T_c)^2 >> B/B_{c2} and (T/T_c)^2 << B/B_{c2}, is discussed.Comment: LaTeX file, 8 pages, no figures, submitted to JETP Letter
    corecore