11 research outputs found

    QuestSim: Human Motion Tracking from Sparse Sensors with Simulated Avatars

    Full text link
    Real-time tracking of human body motion is crucial for interactive and immersive experiences in AR/VR. However, very limited sensor data about the body is available from standalone wearable devices such as HMDs (Head Mounted Devices) or AR glasses. In this work, we present a reinforcement learning framework that takes in sparse signals from an HMD and two controllers, and simulates plausible and physically valid full body motions. Using high quality full body motion as dense supervision during training, a simple policy network can learn to output appropriate torques for the character to balance, walk, and jog, while closely following the input signals. Our results demonstrate surprisingly similar leg motions to ground truth without any observations of the lower body, even when the input is only the 6D transformations of the HMD. We also show that a single policy can be robust to diverse locomotion styles, different body sizes, and novel environments

    DROP: Dynamics Responses from Human Motion Prior and Projective Dynamics

    Full text link
    Synthesizing realistic human movements, dynamically responsive to the environment, is a long-standing objective in character animation, with applications in computer vision, sports, and healthcare, for motion prediction and data augmentation. Recent kinematics-based generative motion models offer impressive scalability in modeling extensive motion data, albeit without an interface to reason about and interact with physics. While simulator-in-the-loop learning approaches enable highly physically realistic behaviors, the challenges in training often affect scalability and adoption. We introduce DROP, a novel framework for modeling Dynamics Responses of humans using generative mOtion prior and Projective dynamics. DROP can be viewed as a highly stable, minimalist physics-based human simulator that interfaces with a kinematics-based generative motion prior. Utilizing projective dynamics, DROP allows flexible and simple integration of the learned motion prior as one of the projective energies, seamlessly incorporating control provided by the motion prior with Newtonian dynamics. Serving as a model-agnostic plug-in, DROP enables us to fully leverage recent advances in generative motion models for physics-based motion synthesis. We conduct extensive evaluations of our model across different motion tasks and various physical perturbations, demonstrating the scalability and diversity of responses.Comment: SIGGRAPH Asia 2023, Video https://youtu.be/tF5WW7qNMLI, Website: https://stanford-tml.github.io/drop

    QuestEnvSim: Environment-Aware Simulated Motion Tracking from Sparse Sensors

    Full text link
    Replicating a user's pose from only wearable sensors is important for many AR/VR applications. Most existing methods for motion tracking avoid environment interaction apart from foot-floor contact due to their complex dynamics and hard constraints. However, in daily life people regularly interact with their environment, e.g. by sitting on a couch or leaning on a desk. Using Reinforcement Learning, we show that headset and controller pose, if combined with physics simulation and environment observations can generate realistic full-body poses even in highly constrained environments. The physics simulation automatically enforces the various constraints necessary for realistic poses, instead of manually specifying them as in many kinematic approaches. These hard constraints allow us to achieve high-quality interaction motions without typical artifacts such as penetration or contact sliding. We discuss three features, the environment representation, the contact reward and scene randomization, crucial to the performance of the method. We demonstrate the generality of the approach through various examples, such as sitting on chairs, a couch and boxes, stepping over boxes, rocking a chair and turning an office chair. We believe these are some of the highest-quality results achieved for motion tracking from sparse sensor with scene interaction

    Leveraging Demonstrations with Latent Space Priors

    Full text link
    Demonstrations provide insight into relevant state or action space regions, bearing great potential to boost the efficiency and practicality of reinforcement learning agents. In this work, we propose to leverage demonstration datasets by combining skill learning and sequence modeling. Starting with a learned joint latent space, we separately train a generative model of demonstration sequences and an accompanying low-level policy. The sequence model forms a latent space prior over plausible demonstration behaviors to accelerate learning of high-level policies. We show how to acquire such priors from state-only motion capture demonstrations and explore several methods for integrating them into policy learning on transfer tasks. Our experimental results confirm that latent space priors provide significant gains in learning speed and final performance. We benchmark our approach on a set of challenging sparse-reward environments with a complex, simulated humanoid, and on offline RL benchmarks for navigation and object manipulation. Videos, source code and pre-trained models are available at the corresponding project website at https://facebookresearch.github.io/latent-space-priors .Comment: Published in Transactions on Machine Learning Research (03/2023

    ACE: Adversarial Correspondence Embedding for Cross Morphology Motion Retargeting from Human to Nonhuman Characters

    Full text link
    Motion retargeting is a promising approach for generating natural and compelling animations for nonhuman characters. However, it is challenging to translate human movements into semantically equivalent motions for target characters with different morphologies due to the ambiguous nature of the problem. This work presents a novel learning-based motion retargeting framework, Adversarial Correspondence Embedding (ACE), to retarget human motions onto target characters with different body dimensions and structures. Our framework is designed to produce natural and feasible robot motions by leveraging generative-adversarial networks (GANs) while preserving high-level motion semantics by introducing an additional feature loss. In addition, we pretrain a robot motion prior that can be controlled in a latent embedding space and seek to establish a compact correspondence. We demonstrate that the proposed framework can produce retargeted motions for three different characters -- a quadrupedal robot with a manipulator, a crab character, and a wheeled manipulator. We further validate the design choices of our framework by conducting baseline comparisons and a user study. We also showcase sim-to-real transfer of the retargeted motions by transferring them to a real Spot robot

    FastMimic: Model-Based Motion Imitation for Agile, Diverse and Generalizable Quadrupedal Locomotion

    No full text
    Robots operating in human environments require a diverse set of skills, including slow and fast walking, turning, side-stepping, and more. However, developing robot controllers capable of exhibiting such a broad range of behaviors is a challenging problem that necessitates meticulous investigation for each task. To address this challenge, we introduce a trajectory optimization method that resolves the kinematic infeasibility of reference animal motions. This method, combined with a model-based controller, results in a unified data-driven model-based control framework capable of imitating various animal gaits without the need for expensive simulation training or real-world fine-tuning. Our framework is capable of imitating a variety of motor skills such as trotting, pacing, turning, and side-stepping with ease. It shows superior tracking capabilities in both simulations and the real world compared to other imitation controllers, including a model-based one and a learning-based motion imitation technique

    PMP: Learning to Physically Interact with Environments using Part-wise Motion Priors

    Full text link
    We present a method to animate a character incorporating multiple part-wise motion priors (PMP). While previous works allow creating realistic articulated motions from reference data, the range of motion is largely limited by the available samples. Especially for the interaction-rich scenarios, it is impractical to attempt acquiring every possible interacting motion, as the combination of physical parameters increases exponentially. The proposed PMP allows us to assemble multiple part skills to animate a character, creating a diverse set of motions with different combinations of existing data. In our pipeline, we can train an agent with a wide range of part-wise priors. Therefore, each body part can obtain a kinematic insight of the style from the motion captures, or at the same time extract dynamics-related information from the additional part-specific simulation. For example, we can first train a general interaction skill, e.g. grasping, only for the dexterous part, and then combine the expert trajectories from the pre-trained agent with the kinematic priors of other limbs. Eventually, our whole-body agent learns a novel physical interaction skill even with the absence of the object trajectories in the reference motion sequence.Comment: 13 pages, 11 figure

    Transformer Inertial Poser: Real-time Human Motion Reconstruction from Sparse IMUs with Simultaneous Terrain Generation

    Full text link
    Real-time human motion reconstruction from a sparse set of (e.g. six) wearable IMUs provides a non-intrusive and economic approach to motion capture. Without the ability to acquire position information directly from IMUs, recent works took data-driven approaches that utilize large human motion datasets to tackle this under-determined problem. Still, challenges remain such as temporal consistency, drifting of global and joint motions, and diverse coverage of motion types on various terrains. We propose a novel method to simultaneously estimate full-body motion and generate plausible visited terrain from only six IMU sensors in real-time. Our method incorporates 1. a conditional Transformer decoder model giving consistent predictions by explicitly reasoning prediction history, 2. a simple yet general learning target named "stationary body points" (SBPs) which can be stably predicted by the Transformer model and utilized by analytical routines to correct joint and global drifting, and 3. an algorithm to generate regularized terrain height maps from noisy SBP predictions which can in turn correct noisy global motion estimation. We evaluate our framework extensively on synthesized and real IMU data, and with real-time live demos, and show superior performance over strong baseline methods.Comment: SIGGRAPH Asia 2022. Video: https://youtu.be/rXb6SaXsnc

    Data-driven control of flapping flight

    No full text
    corecore