6 research outputs found

    Protective films on complex substrates of thermoplastic and cellular elastomers:Prospective applications to rubber, nylon and cork

    Get PDF
    Deposition of thin films is an appropriate methodology to enhance the performance of a material by modification of its surface, while keeping the properties of the bulk largely unaffected. However, a practical implementation becomes less straightforward when dealing with sensitive or complex substrates, for instance, those which cannot be subjected to harsh treatments, such as cleaning and etching, or extreme deposition conditions, like high temperatures, and ion impingement et cetera. This paper concentrates on deposition processing of complex substrates. In particular, it discusses the deposition of two types of protective coatings (diamond-like carbon (DLC) films against friction and wear, and TiO2 films against UV light) on three types of thermoplastic and cellular elastomers (rubber, nylon and cork). It is demonstrated that a successful protection of thermoplastic elastomers against wear with DLC films can be attained, after a thorough adaptation of the procedure to the characteristics of the specific substrate. In addition, the paper reports the very first depositions on a cellular elastomer like cork by vapor deposition methods, including Atomic Layer Deposition (ALD)

    Locking and enrichment strategies

    No full text
    A short overview of different locking mechanisms is presented, in which the more recent locking phenomenon tension locking is placed. Tension locking is found during composite forming simulations and occurs when the element edges are unaligned with the fiber directions. Discontinuities in composite forming simulations show similarities with other weak discontinuities such as material interfaces and shear bands found during shear localization. Two enrichment strategies are explored to resolve tension locking in linear triangular elements

    ironXS: High-school screening for hereditary haemochromatosis is acceptable and feasible

    No full text
    As the results of the Human Genome Project are realised, screening for genetic mutations that predispose to preventable disease is becoming increasingly possible. How and where such screening should best be offered are critical, unanswered questions. This study aimed to assess the acceptability and feasibility of genetic screening for preventable disease, using the model of hereditary haemochromatosis, in high-school students. Screening was offered for the HFE C282Y substitution to 17 638 students. Questionnaires were administered at the time of screening (Q1) and approximately 1 month after results were communicated (Q2). Outcomes assessed were uptake of screening, change in scores of validated anxiety, affect and health perception scales from Q1 to Q2, knowledge and iron indices in C282Y homozygous individuals. A total of 5757 (32.6%) students had screening and 28 C282Y-homozygous individuals (1 in 206) were identified, and none of the 27 individuals who had iron indices measures had significant iron overload. There was no significant change in measures of anxiety, affect or health perception in C282Y homozygous or non-homozygous individuals. Over 86% of students answered each of five knowledge questions correctly at Q1. Genetic population-based screening for a preventable disease can be offered in schools in a way that results in minimal morbidity for those identified at high risk of disease. The results of this study are not only relevant for haemochromatosis, but for other genetic markers of preventable disease such as those for cardiovascular disease and cancer
    corecore