2 research outputs found

    Secure communication with coded wavefronts

    No full text
    Communication between a sender and receiver can be made secure by encrypting the message using public or private shared keys. Quantum key distribution utilizes the unclonability of a quantum state to securely generate a key between the two parties [1]. However, without some way of authentication of either the sender or the receiver, a man-in-the-middle attack with an eavesdropper mimicking the receiver can break the security of the protocol

    Asymmetric cryptography with physical unclonable keys

    No full text
    Secure communication is of paramount importance in modern society. Asymmetric cryptography methods such as the widely used RSA method allow secure exchange of information between parties who have not shared secret keys. However, the existing asymmetric cryptographic schemes rely on unproven mathematical assumptions for security. Further, the digital keys used in their implementation are susceptible to copying that might remain unnoticed. Here we introduce a secure communication method that overcomes these two limitations by employing Physical Unclonable Keys (PUKs). Using optical PUKs realized in opaque scattering materials and employing off-the-shelf equipment, we transmit messages in an error-corrected way. Information is transmitted as patterned wavefronts of few-photon wavepackets which can be successfully decrypted only with the receiver's PUK. The security of PUK-Enabled Asymmetric Communication (PEAC) is not based on any stored secret but on the hardness of distinguishing between different few-photon wavefronts
    corecore