16 research outputs found

    Cold trapped atoms detected with evanescent waves

    Full text link
    We demonstrate the in situ detection of cold 87 Rb atoms near a dielectric surface using the absorption of a weak, resonant evanescent wave. We have used this technique in time of flight experiments determining the density of atoms falling on the surface. A quantitative understanding of the measured curve was obtained using a detailed calculation of the evanescent intensity distribution. We have also used it to detect atoms trapped near the surface in a standing-wave optical dipole potential. This trap was loaded by inelastic bouncing on a strong, repulsive evanescent potential. We estimate that we trap 1.5 x 10 4 atoms at a density 100 times higher than the falling atoms.Comment: 5 pages, 3 figure

    Theoretical study of a cold atom beam splitter

    Full text link
    A theoretical model is presented for the study of the dynamics of a cold atomic cloud falling in the gravity field in the presence of two crossing dipole guides. The cloud is split between the two branches of this laser guide, and we compare experimental measurements of the splitting efficiency with semiclassical simulations. We then explore the possibilities of optimization of this beam splitter. Our numerical study also gives access to detailed information, such as the atom temperature after the splitting

    Guiding of cold atoms by a red-detuned laser beam of moderate power

    Get PDF
    We report measurements on the guiding of cold 87^{87}Rb atoms from a magneto-optical trap by a continuous light beam over a vertical distance of 6.5 mm. For moderate laser power (<<85 mW) we are able to capture around 40% of the cold atoms. Although the guide is red-detuned, the optical scattering rate at this detuning (\approx70 GHz) is acceptably low. For lower detuning (<<30 GHz) a larger fraction was guided but radiation pressure starts to push the atoms upward, effectively lowering the acceleration due to gravity. The measured guided fraction agrees well with an analytical model.Comment: final version, 6 pages, incl. 6 figure

    A rainbow of cold atoms caused by a stochastic process

    Get PDF
    We report direct observation of a rainbow caustic in the velocity distribution of ^{87}Rb atoms, bouncing inelastically on an evanescent-wave atom mirror. In contrast to known examples, this caustic is caused by a stochastic process, namely a spontaneous Raman transition during the bounce. The results are in good agreement with a classical calculation. We observed that although energy is extracted from the atoms, the phase-space density is in most cases not increased

    Creating a low-dimensional quantum gas using dark states in an inelastic evanescent-wave mirror

    Get PDF
    We discuss an experimental scheme to create a low-dimensional gas of ultracold atoms, based on inelastic bouncing on an evanescent-wave mirror. Close to the turning point of the mirror, the atoms are transferred into an optical dipole trap. This scheme can compress the phase-space density and can ultimately yield an optically-driven atom laser. An important issue is the suppression of photon scattering due to ``cross-talk'' between the mirror potential and the trapping potential. We propose that for alkali atoms the photon scattering rate can be suppressed by several orders of magnitude if the atoms are decoupled from the evanescent-wave light. We discuss how such dark states can be achieved by making use of circularly-polarized evanescent waves.Comment: 8 pages, 4 figure

    Observation of radiation pressure exerted by evanescent waves

    Get PDF
    We report a direct observation of radiation pressure, exerted on cold rubidium atoms while bouncing on an evanescent-wave atom mirror. We analyze the radiation pressure by imaging the motion of the atoms after the bounce. The number of absorbed photons is measured for laser detunings ranging from {190 MHz} to {1.4 GHz} and for angles from {0.9 mrad} to {24 mrad} above the critical angle of total internal reflection. Depending on these settings, we find velocity changes parallel with the mirror surface, ranging from 1 to {18 cm/s}. This corresponds to 2 to 31 photon recoils per atom. These results are independent of the evanescent-wave optical power.Comment: 6 pages, 4 figure
    corecore