475 research outputs found

    Teegi: Tangible EEG Interface

    Get PDF
    We introduce Teegi, a Tangible ElectroEncephaloGraphy (EEG) Interface that enables novice users to get to know more about something as complex as brain signals, in an easy, en- gaging and informative way. To this end, we have designed a new system based on a unique combination of spatial aug- mented reality, tangible interaction and real-time neurotech- nologies. With Teegi, a user can visualize and analyze his or her own brain activity in real-time, on a tangible character that can be easily manipulated, and with which it is possible to interact. An exploration study has shown that interacting with Teegi seems to be easy, motivating, reliable and infor- mative. Overall, this suggests that Teegi is a promising and relevant training and mediation tool for the general public.Comment: to appear in UIST-ACM User Interface Software and Technology Symposium, Oct 2014, Honolulu, United State

    Brain-Computer Interfaces in Medicine

    Get PDF
    Brain-computer interfaces (BCIs) acquire brain signals, analyze them, and translate them into commands that are relayed to output devices that carry out desired actions. BCIs do not use normal neuromuscular output pathways. The main goal of BCI is to replace or restore useful function to people disabled by neuromuscular disorders such as amyotrophic lateral sclerosis, cerebral palsy, stroke, or spinal cord injury. From initial demonstrations of electroenceph-alography-based spelling and single-neuron-based device control, researchers have gone on to use electroenceph-alographic, intracortical, electrocorticographic, and other brain signals for increasingly complex control of cursors, robotic arms, prostheses, wheelchairs, and other devices. Brain-computer interfaces may also prove useful for rehabilitation after stroke and for other disorders. In the future, they might augment the performance of surgeons or other medical professionals. Brain-computer interface technology is the focus of a rapidly growing research and development enterprise that is greatly exciting scientists, engineers, clinicians, and the public in general. Its future achievements will depend on advances in 3 crucial areas. Brain-computer interfaces need signal-acquisition hardware that is convenient, portable, safe, and able to function in all environments. Brain-computer interface systems need to be validated in long-term studies of real-world use by people with severe disabilities, and effective and viable models for their widespread dissemination must be implemented. Finally, the day-to-day and moment-to-moment reliability of BCI performance must be improved so that it approaches the reliability of natural muscle-based function

    Targeting Neuroplasticity to Improve Motor Recovery after Stroke

    Get PDF
    After neurological injury, people develop abnormal patterns of neural activity that limit motor recovery. Traditional rehabilitation, which concentrates on practicing impaired skills, is seldom fully effective. New targeted neuroplasticity (TNP) protocols interact with the CNS to induce beneficial plasticity in key sites and thereby enable wider beneficial plasticity. They can complement traditional therapy and enhance recovery. However, their development and validation is difficult because many different TNP protocols are conceivable, and evaluating even one of them is lengthy, laborious, and expensive. Computational models can address this problem by triaging numerous candidate protocols rapidly and effectively. Animal and human empirical testing can then concentrate on the most promising ones. Here we simulate a neural network of corticospinal neurons that control motoneurons eliciting unilateral finger extension. We use this network to (1) study the mechanisms and patterns of cortical reorganization after a stroke, and (2) identify and parameterize a TNP protocol that improves recovery of extension force. After a simulated stroke, standard training produced abnormal bilateral cortical activation and suboptimal force recovery. To enhance recovery, we interdigitated standard trials with trials in which the teaching signal came from a targeted population of sub-optimized neurons. Targeting neurons in secondary motor areas on 5-20% of the total trials restored lateralized cortical activation and improved recovery of extension force. The results illuminate mechanisms underlying suboptimal cortical activity post-stroke; they enable identification and parameterization of the most promising TNP protocols. By providing initial guidance, computational models could facilitate and accelerate realization of new therapies that improve motor recovery

    Targeting Neuroplasticity to Improve Motor Recovery after Stroke

    Get PDF
    After neurological injury, people develop abnormal patterns of neural activity that limit motor recovery. Traditional rehabilitation, which concentrates on practicing impaired skills, is seldom fully effective. New targeted neuroplasticity (TNP) protocols interact with the CNS to induce beneficial plasticity in key sites and thereby enable wider beneficial plasticity. They can complement traditional therapy and enhance recovery. However, their development and validation is difficult because many different TNP protocols are conceivable, and evaluating even one of them is lengthy, laborious, and expensive. Computational models can address this problem by triaging numerous candidate protocols rapidly and effectively. Animal and human empirical testing can then concentrate on the most promising ones. Here we simulate a neural network of corticospinal neurons that control motoneurons eliciting unilateral finger extension. We use this network to (1) study the mechanisms and patterns of cortical reorganization after a stroke, and (2) identify and parameterize a TNP protocol that improves recovery of extension force. After a simulated stroke, standard training produced abnormal bilateral cortical activation and suboptimal force recovery. To enhance recovery, we interdigitated standard trials with trials in which the teaching signal came from a targeted population of sub-optimized neurons. Targeting neurons in secondary motor areas on 5-20% of the total trials restored lateralized cortical activation and improved recovery of extension force. The results illuminate mechanisms underlying suboptimal cortical activity post-stroke; they enable identification and parameterization of the most promising TNP protocols. By providing initial guidance, computational models could facilitate and accelerate realization of new therapies that improve motor recovery

    A note on brain actuated spelling with the Berlin brain-computer interface

    Get PDF
    Brain-Computer Interfaces (BCIs) are systems capable of decoding neural activity in real time, thereby allowing a computer application to be directly controlled by the brain. Since the characteristics of such direct brain-tocomputer interaction are limited in several aspects, one major challenge in BCI research is intelligent front-end design. Here we present the mental text entry application ‘Hex-o-Spell’ which incorporates principles of Human-Computer Interaction research into BCI feedback design. The system utilises the high visual display bandwidth to help compensate for the extremely limited control bandwidth which operates with only two mental states, where the timing of the state changes encodes most of the information. The display is visually appealing, and control is robust. The effectiveness and robustness of the interface was demonstrated at the CeBIT 2006 (world’s largest IT fair) where two subjects operated the mental text entry system at a speed of up to 7.6 char/min

    Classification des potentiels évoqués par corrélation de Pearson dans une interface cerveau-ordinateur

    No full text
    National audienceDans cette communication, nous décrivons et évaluons les performances d'une technique d'apprentissage des coefficients d'un classifieur linéaire utilisé dans une interface cerveau-ordinateur. Les signaux de l'électroencéphalogramme d'un individu sont analysés au moyen de cette technique afin de mettre en évidence les réponses de ce dernier à des stimuli visuels. Le traitement et la classification des signaux sont utilisés afin d'implanter un système de communication palliative permettant à l'individu d'épeler des mots. Les performances de la méthode de classification ont été évaluées par une expérimentation sur huit personnes

    A comparison of classification techniques for the P300 speller

    Get PDF
    International audienceThis study assesses the relative performance characteristics of five established classification techniques on data collected using the P300 Speller paradigm, originally described by Farwell and Donchin (1988 Electroenceph. Clin. Neurophysiol. 70 510). Four linear methods: Pearson's correlation method (PCM), Fisher's linear discriminant (FLD), stepwise linear discriminant analysis (SWLDA) and a linear support vector machine (LSVM); and one nonlinear method: Gaussian kernel support vector machine (GSVM), are compared for classifying offline data from eight users. The relative performance of the classifiers is evaluated, along with the practical concerns regarding the implementation of the respective methods. The results indicate that while all methods attained acceptable performance levels, SWLDA and FLD provide the best overall performance and implementation characteristics for practical classification of P300 Speller data

    Brain Computer Interfaces for inclusion

    Get PDF
    All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately

    Effects of Sensorimotor Rhythm Modulation on the Human Flexor Carpi Radialis H-Reflex

    Get PDF
    People can learn over training sessions to increase or decrease sensorimotor rhythms (SMRs) in the electroencephalogram (EEG). Activity-dependent brain plasticity is thought to guide spinal plasticity during motor skill learning; thus, SMR training may affect spinal reflexes and thereby influence motor control. To test this hypothesis, we investigated the effects of learned mu (8–13 Hz) SMR modulation on the flexor carpi radialis (FCR) H-reflex in 6 subjects with no known neurological conditions and 2 subjects with chronic incomplete spinal cord injury (SCI). All subjects had learned and practiced over more than 10 < 30-min training sessions to increase (SMR-up trials) and decrease (SMR-down trials) mu-rhythm amplitude over the hand/arm area of left sensorimotor cortex with ≥80% accuracy. Right FCR H-reflexes were elicited at random times during SMR-up and SMR-down trials, and in between trials. SMR modulation affected H-reflex size. In all the neurologically normal subjects, the H-reflex was significantly larger [116% ± 6 (mean ± SE)] during SMR-up trials than between trials, and significantly smaller (92% ± 1) during SMR-down trials than between trials (p < 0.05 for both, paired t-test). One subject with SCI showed similar H-reflex size dependence (high for SMR-up trials, low for SMR-down trials): the other subject with SCI showed no dependence. These results support the hypothesis that SMR modulation has predictable effects on spinal reflex excitability in people who are neurologically normal; they also suggest that it might be used to enhance therapies that seek to improve functional recovery in some individuals with SCI or other CNS disorders

    Brain-Computer Interface Based on Generation of Visual Images

    Get PDF
    This paper examines the task of recognizing EEG patterns that correspond to performing three mental tasks: relaxation and imagining of two types of pictures: faces and houses. The experiments were performed using two EEG headsets: BrainProducts ActiCap and Emotiv EPOC. The Emotiv headset becomes widely used in consumer BCI application allowing for conducting large-scale EEG experiments in the future. Since classification accuracy significantly exceeded the level of random classification during the first three days of the experiment with EPOC headset, a control experiment was performed on the fourth day using ActiCap. The control experiment has shown that utilization of high-quality research equipment can enhance classification accuracy (up to 68% in some subjects) and that the accuracy is independent of the presence of EEG artifacts related to blinking and eye movement. This study also shows that computationally-inexpensive Bayesian classifier based on covariance matrix analysis yields similar classification accuracy in this problem as a more sophisticated Multi-class Common Spatial Patterns (MCSP) classifier
    corecore