2 research outputs found

    12-O-Tetradecanoylphorbol-13-acetate increases cardiomyogenesis through PKC/ERK signaling

    Get PDF
    12-O-Tetradecanoylphorbol-13-acetate (TPA) is the most widely used diacylglycerol (DAG) mimetic agent and inducer of protein kinase C (PKC)-mediated cellular response in biomedical studies. TPA has been proposed as a pluripotent cell differentiation factor, but results obtained have been inconsistent. In the present study we show that TPA can be applied as a cardiomyogenesis-promoting factor for the differentiation of mouse embryonic stem (mES) cells in vitro. The mechanism of TPA action is mediated by the induction of extracellular signal-regulated kinase (ERK) activity and the subsequent phosphorylation of GATA4 transcription factor. Interestingly, general mitogens (FGF, EGF, VEGF and serum) or canonical WNT signalling did not mimic the effect of TPA. Moreover, on the basis of our results, we postulate that a TPA-sensitive population of cardiac progenitor cells exists at a certain time point (after days 6–8 of the differentiation protocol) and that the proposed treatment can be used to increase the multiplication of ES cell-derived cardiomyocytes. © 2020, The Author(s).Czech Science FoundationGrant Agency of the Czech Republic [18-18235S]; Faculty of Science of Masaryk University [MUNI/A/1145/2017]; Ministry of Education, Youth and Sports of the Czech Republic (MEYS CR) [LQ1605

    SorCS2 binds progranulin to regulate motor neuron development

    Full text link
    Summary: Motor neuron (MN) development and nerve regeneration requires orchestrated action of a vast number of molecules. Here, we identify SorCS2 as a progranulin (PGRN) receptor that is required for MN diversification and axon outgrowth in zebrafish and mice. In zebrafish, SorCS2 knockdown also affects neuromuscular junction morphology and fish motility. In mice, SorCS2 and PGRN are co-expressed by newborn MNs from embryonic day 9.5 until adulthood. Using cell-fate tracing and nerve segmentation, we find that SorCS2 deficiency perturbs cell-fate decisions of brachial MNs accompanied by innervation deficits of posterior nerves. Additionally, adult SorCS2 knockout mice display slower motor nerve regeneration. Interestingly, primitive macrophages express high levels of PGRN, and their interaction with SorCS2-positive motor axon is required during axon pathfinding. We further show that SorCS2 binds PGRN to control its secretion, signaling, and conversion into granulins. We propose that PGRN-SorCS2 signaling controls MN development and regeneration in vertebrates
    corecore