51 research outputs found

    International, multicenter standardization of acute graft-versus-host disease clinical data collection: a report from the Mount Sinai Acute GVHD International Consortium

    Get PDF
    Acute graft-versus-host disease (GVHD) remains a leading cause of morbidity and nonrelapse mortality after allogeneic hematopoietic cell transplantation. The clinical staging of GVHD varies greatly between transplant centers and is frequently not agreed on by independent reviewers. The lack of standardized approaches to handle common sources of discrepancy in GVHD grading likely contributes to why promising GVHD treatments reported from single centers have failed to show benefit in randomized multicenter clinical trials. We developed guidelines through international expert consensus opinion to standardize the diagnosis and clinical staging of GVHD for use in a large international GVHD research consortium. During the first year of use, the guidance followed discussion of complex clinical phenotypes by experienced transplant physicians and data managers. These guidelines increase the uniformity of GVHD symptom capture, which may improve the reproducibility of GVHD clinical trials after further prospective validation

    Identification and Visualization of CD8+ T Cell Mediated IFN-γ Signaling in Target Cells during an Antiviral Immune Response in the Brain

    Get PDF
    CD8+ T cells infiltrate the brain during an anti-viral immune response. Within the brain CD8+ T cells recognize cells expressing target antigens, become activated, and secrete IFNγ. However, there are no methods to recognize individual cells that respond to IFNγ. Using a model that studies the effects of the systemic anti-adenoviral immune response upon brain cells infected with an adenoviral vector in mice, we describe a method that identifies individual cells that respond to IFNγ. To identify individual mouse brain cells that respond to IFNγ we constructed a series of adenoviral vectors that contain a transcriptional response element that is selectively activated by IFNγ signaling, the gamma-activated site (GAS) promoter element; the GAS element drives expression of a transgene, Cre recombinase (Ad-GAS-Cre). Upon binding of IFNγ to its receptor, the intracellular signaling cascade activates the GAS promoter, which drives expression of the transgene Cre recombinase. We demonstrate that upon activation of a systemic immune response against adenovirus, CD8+ T cells infiltrate the brain, interact with target cells, and cause an increase in the number of cells expressing Cre recombinase. This method can be used to identify, study, and eventually determine the long term fate of infected brain cells that are specifically targeted by IFNγ. The significance of this method is that it will allow to characterize the networks in the brain that respond to the specific secretion of IFNγ by anti-viral CD8+ T cells that infiltrate the brain. This will allow novel insights into the cellular and molecular responses underlying brain immune responses

    T-cell recognition of chemicals, protein allergens and drugs: towards the development of in vitro assays

    Get PDF
    Chemicals can elicit T-cell-mediated diseases such as allergic contact dermatitis and adverse drug reactions. Therefore, testing of chemicals, drugs and protein allergens for hazard identification and risk assessment is essential in regulatory toxicology. The seventh amendment of the EU Cosmetics Directive now prohibits the testing of cosmetic ingredients in mice, guinea pigs and other animal species to assess their sensitizing potential. In addition, the EU Chemicals Directive REACh requires the retesting of more than 30,000 chemicals for different toxicological endpoints, including sensitization, requiring vast numbers of animals. Therefore, alternative methods are urgently needed to eventually replace animal testing. Here, we summarize the outcome of an expert meeting in Rome on 7 November 2009 on the development of T-cell-based in vitro assays as tools in immunotoxicology to identify hazardous chemicals and drugs. In addition, we provide an overview of the development of the field over the last two decades

    Photon-number squeezing in a free-running quantum-well laser operating at 980 nm

    No full text
    We present intensity noise investigations of a free-running InGaAs quantum-well laser diode operating at 980 nm at room temperature. The laser had a threshold current of 17 mA. Photon-number squeezing was achieved for drive currents of 48 mA when the laser was operating on two dominant longitudinal modes. The degree of squeezing obtained was 9%, which was in reasonable agreement with the current-to-current efficiency of 11%. No squeezing was observed at 35 K

    Improved photon-number squeezing in light-emitting diodes

    No full text
    We report photon-number squeezing measurements on high-efficiency double heterojunction AlGaAs infrared light-emitting diodes. The overall current-to-current efficiency was 0.25 at room temperature and 0.40 at 77 K, resulting in a noise reduction below the Standard Quantum Limit of 1.1 dB and 2.0 dB, respectively. In addition, photocurrent correlation experiments were carried out with 2 or 3 LEDs in series, revealing a normalized correlation coefficient of 0.25 at room temperature and 0.40 at 77 K

    Intermode correlations in a quantum dot laser as a measure of inter-dot entanglement

    No full text
    The question whether individual quantum dots are coupled to each other has drawn significant interest. This article discusses the first photon statistics investigations of a quantum dot semiconductor laser that enables detection of the degree of coupling between individual quantum dots

    Intensity noise in quantum-dot laser diodes

    No full text
    We present intensity noise studies of a self-organized InAs/GaAs quantum-dot laser. The noise power measured for the full emission spectrum was found to be smaller than that for separate longitudinal mode groups. This noise cancellation indicates that the intensity fluctuations of the mode groups were anticorrelated, with typical values of the normalized correlation coefficient of around -0.50. This surprisingly high value is not consistent with the model of the quantum-dot laser as an inhomogeneous ensemble of independent microlasers. © 2001 American Institute of Physics

    The Contribution of Evolutionary Game Theory to Understanding and Treating Cancer

    No full text
    Evolutionary game theory mathematically conceptualizes and analyzes biological interactions where one’s fitness not only depends on one’s own traits, but also on the traits of others. Typically, the individuals are not overtly rational and do not select, but rather inherit their traits. Cancer can be framed as such an evolutionary game, as it is composed of cells of heterogeneous types undergoing frequency-dependent selection. In this article, we first summarize existing works where evolutionary game theory has been employed in modeling cancer and improving its treatment. Some of these game-theoretic models suggest how one could anticipate and steer cancer’s eco-evolutionary dynamics into states more desirable for the patient via evolutionary therapies. Such therapies offer great promise for increasing patient survival and decreasing drug toxicity, as demonstrated by some recent studies and clinical trials. We discuss clinical relevance of the existing game-theoretic models of cancer and its treatment, and opportunities for future applications. Moreover, we discuss the developments in cancer biology that are needed to better utilize the full potential of game-theoretic models. Ultimately, we demonstrate that viewing tumors with evolutionary game theory has medically useful implications that can inform and create a lockstep between empirical findings and mathematical modeling. We suggest that cancer progression is an evolutionary competition between different cell types and therefore needs to be viewed as an evolutionary game
    • …
    corecore