341 research outputs found
Computing Preferred Answer Sets by Meta-Interpretation in Answer Set Programming
Most recently, Answer Set Programming (ASP) is attracting interest as a new
paradigm for problem solving. An important aspect which needs to be supported
is the handling of preferences between rules, for which several approaches have
been presented. In this paper, we consider the problem of implementing
preference handling approaches by means of meta-interpreters in Answer Set
Programming. In particular, we consider the preferred answer set approaches by
Brewka and Eiter, by Delgrande, Schaub and Tompits, and by Wang, Zhou and Lin.
We present suitable meta-interpreters for these semantics using DLV, which is
an efficient engine for ASP. Moreover, we also present a meta-interpreter for
the weakly preferred answer set approach by Brewka and Eiter, which uses the
weak constraint feature of DLV as a tool for expressing and solving an
underlying optimization problem. We also consider advanced meta-interpreters,
which make use of graph-based characterizations and often allow for more
efficient computations. Our approach shows the suitability of ASP in general
and of DLV in particular for fast prototyping. This can be fruitfully exploited
for experimenting with new languages and knowledge-representation formalisms.Comment: 34 pages, appeared as a Technical Report at KBS of the Vienna
University of Technology, see http://www.kr.tuwien.ac.at/research/reports
Towards a theoretical foundation for morphological computation with compliant bodies
The control of compliant robots is, due to their often nonlinear and complex dynamics, inherently difficult. The vision of morphological computation proposes to view these aspects not only as problems, but rather also as parts of the solution. Non-rigid body parts are not seen anymore as imperfect realizations of rigid body parts, but rather as potential computational resources. The applicability of this vision has already been demonstrated for a variety of complex robot control problems. Nevertheless, a theoretical basis for understanding the capabilities and limitations of morphological computation has been missing so far. We present a model for morphological computation with compliant bodies, where a precise mathematical characterization of the potential computational contribution of a complex physical body is feasible. The theory suggests that complexity and nonlinearity, typically unwanted properties of robots, are desired features in order to provide computational power. We demonstrate that simple generic models of physical bodies, based on mass-spring systems, can be used to implement complex nonlinear operators. By adding a simple readout (which is static and linear) to the morphology such devices are able to emulate complex mappings of input to output streams in continuous time. Hence, by outsourcing parts of the computation to the physical body, the difficult problem of learning to control a complex body, could be reduced to a simple and perspicuous learning task, which can not get stuck in local minima of an error functio
The role of feedback in morphological computation with compliant bodies
The generation of robust periodic movements of complex nonlinear robotic systems is inherently difficult, especially, if parts of the robots are compliant. It has previously been proposed that complex nonlinear features of a robot, similarly as in biological organisms, might possibly facilitate its control. This bold hypothesis, commonly referred to as morphological computation, has recently received some theoretical support by Hauser etal. (Biol Cybern 105:355-370, doi: 10.1007/s00422-012-0471-0 , 2012). We show in this article that this theoretical support can be extended to cover not only the case of fading memory responses to external signals, but also the essential case of autonomous generation of adaptive periodic patterns, as, e.g., needed for locomotion. The theory predicts that feedback into the morphological computing system is necessary and sufficient for such tasks, for which a fading memory is insufficient. We demonstrate the viability of this theoretical analysis through computer simulations of complex nonlinear mass-spring systems that are trained to generate a large diversity of periodic movements by adapting the weights of a simple linear feedback device. Hence, the results of this article substantially enlarge the theoretically tractable application domain of morphological computation in robotics, and also provide new paradigms for understanding control principles of biological organism
Towards a theoretical foundation for morphological computation with compliant bodies
Erworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch)The control of compliant robots is, due to their often nonlinear and complex dynamics, inherently difficult. The vision of morphological computation proposes to view these aspects not only as problems, but rather also as parts of the solution. Non-rigid body parts are not seen anymore as imperfect realizations of rigid body parts, but rather as potential computational resources. The applicability of this vision has already been demonstrated for a variety of complex robot control problems. Nevertheless, a theoretical basis for understanding the capabilities and limitations of morphological computation has been missing so far. We present a model for morphological computation with compliant bodies, where a precise mathematical characterization of the potential computational contribution of a complex physical body is feasible. The theory suggests that complexity and nonlinearity, typically unwanted properties of robots, are desired features in order to provide computational power. We demonstrate that simple generic models of physical bodies, based on mass-spring systems, can be used to implement complex nonlinear operators. By adding a simple readout (which is static and linear) to the morphology such devices are able to emulate complex mappings of input to output streams in continuous time. Hence, by outsourcing parts of the computation to the physical body, the difficult problem of learning to control a complex body, could be reduced to a simple and perspicuous learning task, which can not get stuck in local minima of an error function
- …