6 research outputs found

    Radiative Scalar Meson Decays in the Light-Front Quark Model

    Full text link
    We construct a relativistic 3P0^3P_0 wavefunction for scalar mesons within the framework of light-front quark model(LFQM). This scalar wavefunction is used to perform relativistic calculations of absolute widths for the radiative decay processes(0++)γγ,(0++)ϕγ(0^{++})\to\gamma\gamma,(0^{++})\to\phi\gamma, and (0++)ργ(0^{++})\to\rho\gamma which incorporate the effects of glueball-qqˉq\bar{q} mixing. The mixed physical states are assumed to be f0(1370),f0(1500)f_0(1370),f_0(1500),and f0(1710)f_0(1710) for which the flavor-glue content is taken from the mixing calculations of other works. Since experimental data for these processes are poor, our results are compared with those of a recent non-relativistic model calculation. We find that while the relativistic corrections introduced by the LFQM reduce the magnitudes of the decay widths by 50-70%, the relative strengths between different decay processes are fairly well preserved. We also calculate decay widths for the processes ϕ(0++)γ\phi\to(0^{++})\gamma and (0^{++})\to\gamma\gamm involving the light scalars f0(980)f_0(980) and a0(980)a_0(980) to test the simple qqˉq\bar{q} model of these mesons. Our results of qqˉq\bar{q} model for these processes are not quite consistent with well-established data, further supporting the idea that f0(980)f_0(980) and a0(980)a_0(980) are not conventional qqˉq\bar{q} states.Comment: 10 pages, 4 figure

    Consistent treatment of spin-1 mesons in the light-front formalism

    Full text link
    We analyze the matrix element of the electroweak current between q \qb vector meson states in the framework of a covariant extension of the light-front formalism. The light-front matrix element of a one-body current is naturally associated with zero modes, which affect some of the form factors that are necessary to represent the Lorentz structure of the light-front integral. The angular condition contains some information on zero modes, i.e., only if the effect of zero modes is accounted for correctly, is it satisfied. With plausible assumptions we derive from the angular condition several consistency conditions which can be used quite generally to determine the zero mode contribution of form factors. The correctness of this method is tested by the phenomenological success of the derived form factors. We compare the predictions of our formalism with those of the standard light-front approach and with available data. As examples we discuss the magnetic moment of the ρ\rho, the coupling constant gDDπg_{D^\ast D \pi}, and the coupling constants of the pseudoscalar density, gπg_\pi and gKg_K, which provide a phenomenological link between constituent and current quark masses.Comment: 36 pages, figure 1 is include
    corecore