15 research outputs found

    Pattern representation and recognition with accelerated analog neuromorphic systems

    Full text link
    Despite being originally inspired by the central nervous system, artificial neural networks have diverged from their biological archetypes as they have been remodeled to fit particular tasks. In this paper, we review several possibilites to reverse map these architectures to biologically more realistic spiking networks with the aim of emulating them on fast, low-power neuromorphic hardware. Since many of these devices employ analog components, which cannot be perfectly controlled, finding ways to compensate for the resulting effects represents a key challenge. Here, we discuss three different strategies to address this problem: the addition of auxiliary network components for stabilizing activity, the utilization of inherently robust architectures and a training method for hardware-emulated networks that functions without perfect knowledge of the system's dynamics and parameters. For all three scenarios, we corroborate our theoretical considerations with experimental results on accelerated analog neuromorphic platforms.Comment: accepted at ISCAS 201

    Electrochemical Pressure Impedance Spectroscopy (EPIS): A Promising Diagnostic Tool for Metal-air Batteries and Fuel Cells

    No full text
    Electrochemical impedance spectroscopy (EIS) is a widely-used diagnostic technique to characterize electrochemical processes. It is based on the dynamic analysis of two electrical observables, that is, current and voltage. Electrochemical cells with gaseous reactants or products (e.g., fuel cells, metal/air cells, electrolyzers) offer an additional observable, that is, the gas pressure. The dynamic coupling of current and/or voltage with gas pressure gives rise to a number of additional impedance definitions, for which we have introduced the term electrochemical pressure impedance spectroscopy (EPIS) [1,2]. EPIS shows a particular sensitivity towards transport processes of gas-phase or dissolved species, in particular, diffusion coefficients and transport pathway lengths. It is as such complementary to standard EIS, which is mainly sensitive towards electrochemical processes. This sensitivity can be exploited for model parameterization and validation. A general analysis of EPIS is presented, which shows the necessity of model-based interpretation of the complex EPIS shapes in the Nyquist plot (cf. Figure). We then present EPIS simulations for two different electrochemical cells: (1) a sodium/oxygen battery cell and (2) a hydrogen/air fuel cell. We use 1D or 2D electrochemical and transport models to simulate current excitation/pressure detection or pressure excitation/voltage detection. The results are compared to first EPIS experimental data available in literature [2,3]

    Model-based analysis of Electrochemical Pressure Impedance Spectroscopy (EPIS) for PEM Fuel Cells

    No full text
    Electrochemical impedance spectroscopy (EIS) is a widely-used diagnostic technique to characterize electrochemical processes. It is based on the dynamic analysis of two electrical observables, that is, current and voltage. Electrochemical cells with gaseous reactants or products, in particular fuel cells, offer an additional observable, that is, the gas pressure. The dynamic coupling of current or voltage with gas pressure gives rise to a number of additional impedance definitions, for which we have previously introduced the term electrochemical pressure impedance spectroscopy (EPIS) [1,2]. EPIS shows a particular sensitivity towards transport processes of gas-phase or dissolved species, in particular, diffusion coefficients and transport pathway lengths. It is as such complementary to standard EIS, which is mainly sensitive towards electrochemical processes. First EPIS experiments on PEM fuel cells have recently been shown [3]. We present a detailed modeling and simulation analysis of EPIS of a PEM fuel cell. We use a 1D+1D continuum model of a fuel/air channel pair with GDL and MEA. Backpressure is dynamically varied, and the resulting simulated oscillation in cell voltage is evaluated to yield the ▁Z_( V⁄p_ca ) EPIS signal. Results are obtained for different transport situations of the fuel cell, giving rise to very complex EPIS shapes in the Nyquist plot. This complexity shows the necessity of model-based interpretation of the complex EPIS shapes. Based on the simulation results, specific features in the EPIS spectra can be assigned to different transport domains (gas channel, GDL, membrane water transport)

    Multi-Methodology Modeling and Design of Lithium-Air Cells with Aqueous Electrolyte

    No full text
    Metal-air batteries are being investigated as alternative to state-of-the-art lithium-ion batteries for mobile and stationary applications due to their higher specific energy and potentially lower cost. Modeling and simulation techniques allow a better understanding and improvement of the complex mechanisms and properties of metal-air batteries. We present simulation results of a lithium-air (Li/O2) battery with aqueous alkaline (LiOH) electrolyte using three different methodologies, (i) Lattice-Boltzmann modeling on the porous electrode scale, (ii) multi-physics continuum modeling on the single-cell scale and (iii) system simulation of a Li/O2-battery-powered electric vehicle. Different cell designs (porous separator, stirred separator, and redox-flow design) are investigated in order to quantitatively assess their performance. Virtual aqueous lithium-air batteries yielded high specific energy (up to 755 Wh/kg), but considerably uncompetitive specific power, which prohibit the use in battery electric vehicles at the present stage of development

    Electrochemical Pressure Impedance Spectroscopy (EPIS) as Diagnostic Method for Electrochemical Cells with Gaseous Reactants: A Model-Based Analysis

    No full text
    Electrochemical impedance spectroscopy (EIS) is a widely-used diagnostic technique to characterize electrochemical processes. It is based on the dynamic analysis of two electrical observables, that is, current and voltage. Electrochemical cells with gaseous reactants or products (e.g., fuel cells, metal/air cells, electrolyzers) offer an additional observable, that is, the gas pressure. The dynamic coupling of current and/or voltage with gas pressure gives rise to a number of additional impedance definitions, for which we use the term electrochemical pressure impedance. It also gives rise to different experimental probing approaches. In this article we present a model-based study of electrochemical pressure impedance spectroscopy (EPIS). Possible quantifications and realizations of EPIS are discussed. The study of generic cell geometries consisting of gas reservoir, diffusion layer(s) and electrochemically active layer(s) reveals distinct spiral-shaped features in the Nyquist plot. Using the example of a sodium/oxygen (Na/O2) cell, the dynamic spatiotemporal behavior of the state variables is quantified and interpreted. Results are compared to first experimental EPIS measurements by Hartmann et al. [J. Phys. Chem. C118, 1461, 2014]. A sensitivity analysis highlights the properties of EPIS with respect to geometric, transport, and kinetic parameters. We demonstrate that EPIS is sensitive to transport parameters that are not well-accessible with standard EIS

    Two-dimensional modeling and analysis of mass transfer losses in a Li-air button cell for different electrolytes

    No full text
    Practical bottlenecks associated with commercialization of Lithium-air cells include capacity limitation and low cycling efficiency. The origin of such losses can be traced to complex electrochemical side reactions and reactant mass transport losses[1]. The efforts to minimize such losses include exploration of various electrolytes with additives[2], and cell component geometry and material design. Given the wide range of options for such materials, it is almost impractical to experimentally setup and characterize all those cells. Consequently, modeling and simulation studies are efficient alternatives to analyze spatially and temporally resolved cell behavior for various combinations of materials[3]. In this study, with the help of a two-dimensional multi physics model, we have focused on the effect of electrode and electrolyte interaction (electrochemistry), choice of electrolyte (species transport), and electrode geometry (electrode design) on the performance of a lithium-air button cell. Figure1a shows the schematics of the 2D axisymmetric computational domain. A comparative analysis of five different electrolytes was performed while focusing on the 2D distribution of local current density and the concentration of electro-chemically active species in the cell, that is, O2and Li+. Using two different cathode configurations, namely, flooded electrode and gas diffusion electrode (GDE)[4] at different cathode thickness, the effect of cell geometry and electrolyte saturation on cell performance was explored. Further, a detailed discussion on electrode volume utilization (cf. Figure1b) is presented via changes in the active volume of cathode that produces 90% of the total current with the cell current density for different combinations of electrolyte saturations and cathode thickness

    Multistep Reaction Mechanisms in Nonaqueous Lithium–Oxygen Batteries with Redox Mediator : a Model-Based Study

    No full text
    Lithium–oxygen cells with nonaqueous electrolyte show high overpotentials during charge, indicating asymmetric charge/discharge reaction mechanisms. We present a kinetic modeling and simulation study of the lithium–oxygen cell cycling behavior. The model includes a multistep reaction mechanism of the cell reaction (2Li + O2 ⇄ Li2O2) forming lithium peroxide by precipitation, coupled to a 1D porous-electrode transport model. We apply the model to study the asymmetric discharge/charge characteristics and analyze the influence of a redox mediator dissolved homogeneously in the liquid electrolyte. Model predictions are compared to experimental galvanostatic cycling data of cells without and with 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) as redox mediator. The predicted discharge behavior shows good agreement with the experimental results. A spatiotemporal analysis of species concentrations reveals inhomogeneous distributions of dissolved oxygen and reaction products within the cathode during discharge. The experimentally observed charge overpotentials as well as their reduction by using a redox mediator can be qualitatively reproduced with a partially irreversible reaction mechanism. However, the proposed models fail to reproduce the particular shape of the experimental charge curve with continuously increasing charge overpotential, which implies that part of the reaction mechanism is still open for investigation in future work
    corecore