114 research outputs found

    Compositional optimization of hard-magnetic phases with machine-learning models

    Full text link
    Machine Learning (ML) plays an increasingly important role in the discovery and design of new materials. In this paper, we demonstrate the potential of ML for materials research using hard-magnetic phases as an illustrative case. We build kernel-based ML models to predict optimal chemical compositions for new permanent magnets, which are key components in many green-energy technologies. The magnetic-property data used for training and testing the ML models are obtained from a combinatorial high-throughput screening based on density-functional theory calculations. Our straightforward choice of describing the different configurations enables the subsequent use of the ML models for compositional optimization and thereby the prediction of promising substitutes of state-of-the-art magnetic materials like Nd2_2Fe14_{14}B with similar intrinsic hard-magnetic properties but a lower amount of critical rare-earth elements.Comment: 12 pages, 6 figure

    Interplay of charge-transfer and Mott-Hubbard physics approached by an efficient combination of self-interaction correction and dynamical mean-field theory

    Full text link
    Late transition-metal oxides with small charge-transfer energy Δ\Delta raise issues for state-of-the-art correlated electronic structure schemes such as the combination of density functional theory (DFT) with dynamical mean-field theory (DMFT). The accentuated role of the oxygen valence orbitals in these compounds asks for an enhanced description of ligand-based correlations. Utilizing the rocksalt-like NiO as an example, we present an advancement of charge self-consistent DFT+DMFT by including self-interaction correction (SIC) applied to oxygen. This introduces explicit onsite O correlations as well as an improved treatment of intersite p−dp-d correlations. Due to the efficient SIC incorporation in a pseudopotential form, the DFT+sicDMFT framework is an advanced but still versatile method to address the interplay of charge-transfer and Mott-Hubbard physics. We revisit the spectral features of stoichiometric NiO and reveal the qualitative sufficiency of local DMFT self-energies in describing spectral peak structures usually associated with explicit nonlocal processes. For Lix_xNi1−x_{1-x}O, prominent in-gap states are verified by the present theoretical study.Comment: 8 pages, 6 figure

    Coherence function control of Quantum Dot Superluminescent Light Emitting Diodes by frequency selective optical feedback.

    Get PDF
    Low coherent light interferometry requires broad bandwidth light sources to achieve high axial resolution. Here, Superluminescent Light Emitting Diodes (SLDs) utilizing Quantum Dot (QD) gain materials are promising devices as they unify large spectral bandwidths with sufficient power at desired emission wavelengths. However, frequently a dip occurs in the optical spectrum that translates into high side lobes in the coherence function thereby reducing axial resolution and image quality. We apply the experimental technique of frequency selective feedback to shape the optical spectrum of the QD-SLD, hence optimizing the coherence properties. For well-selected feedback parameters, a strong reduction of the parasitic side lobes by a factor of 3.5 was achieved accompanied by a power increase of 40% and an improvement of 10% in the coherence length. The experimental results are in excellent agreement with simulations that even indicate potential for further optimizations

    High-Throughput Screening of Rare-Earth-Lean Intermetallic 1-13-X Compounds for Good Hard-Magnetic Properties

    Get PDF
    By computational high-throughput screening, the spontaneous magnetization Ms, uniaxial magnetocrystalline anisotropy constant K₁, anisotropy field Ha, and maximum energy product (BH)max are estimated for ferromagnetic intermetallic phases with a tetragonal 1-13-X structure related to the LaCo₉Si₄ structure type. For SmFe₁₃N, a (BH)max as high as that of Nd₂Fe₁₄B and a comparable K₁ are predicted. Further promising candidates of composition SmFe₁₂AN with A = Co, Ni, Cu, Zn, Ga, Ti, V, Al, Si, or P are identified which potentially reach (BH)max values higher than 400 kJ/m³ combined with significant K₁ values, while containing almost 50% less rare-earth atoms than Nd₂Fe₁₄B

    Performance of a Small Array of Imaging Air Cherenkov Telescopes sited in Australia

    Full text link
    As TeV gamma-ray astronomy progresses into the era of the Cherenkov Telescope Array (CTA), there is a desire for the capacity to instantaneously follow up on transient phenomena and continuously monitor gamma-ray flux at energies above 101210^{12} eV. To this end, a worldwide network of Imaging Air Cherenkov Telescopes (IACTs) is required to provide triggers for CTA observations and complementary continuous monitoring. An IACT array sited in Australia would contribute significant coverage of the Southern Hemisphere sky. Here, we investigate the suitability of a small IACT array and how different design factors influence its performance. Monte Carlo simulations were produced based on the Small-Sized Telescope (SST) and Medium-Sized Telescope (MST) designs from CTA. Angular resolution improved with larger baseline distances up to 277m between telescopes, and energy thresholds were lower at 1000m altitude than at 0m. The ∌\sim300 GeV energy threshold of MSTs proved more suitable for observing transients than the ∌\sim1.2 TeV threshold of SSTs. An array of four MSTs at 1000m was estimated to give a 5.7σ\sigma detection of an RS Ophiuchi-like nova eruption from a 4-hour observation. We conclude that an array of four MST-class IACTs at an Australian site would ideally complement the capabilities of CTA.Comment: 10 pages, 13 figures, 2 tables, accepted for publication in PAS

    Structural determinants of specificity and regulation of activity in the allosteric loop network of human KLK8/neuropsin

    Get PDF
    Human KLK8/neuropsin, a kallikrein-related serine peptidase, is mostly expressed in skin and the hippocampus regions of the brain, where it regulates memory formation by synaptic remodeling. Substrate profiles of recombinant KLK8 were analyzed with positional scanning using fluorogenic tetrapeptides and the proteomic PICS approach, which revealed the prime side specificity. Enzyme kinetics with optimized substrates showed stimulation by Ca2+ and inhibition by Zn2+, which are physiological regulators. Crystal structures of KLK8 with a ligand-free active site and with the inhibitor leupeptin explain the subsite specificity and display Ca2+ bound to the 75-loop. The variants D70K and H99A confirmed the antagonistic role of the cation binding sites. Molecular docking and dynamics calculations provided insights in substrate binding and the dual regulation of activity by Ca2+ and Zn2+, which are important in neuron and skin physiology. Both cations participate in the allosteric surface loop network present in related serine proteases. A comparison of the positional scanning data with substrates from brain suggests an adaptive recognition by KLK8, based on the tertiary structures of its targets. These combined findings provide a comprehensive picture of the molecular mechanisms underlying the enzyme activity of KLK8.(VLID)276376

    Impact of everolimus plus calcineurin inhibitor on formation of non-HLA antibodies and graft outcomes in kidney transplant recipients: 12-month results from the ATHENA substudy

    Get PDF
    BackgroundNon-human leukocyte antigen (non-HLA) antibodies including antibodies targeting Angiotensin II type 1 (AT1R) and Endothelin-1 type A (ETAR) receptors represent a topic of interest in kidney transplantation (KTx). This exploratory substudy evaluated the impact of everolimus (EVR) or mycophenolic acid (MPA) in combination with tacrolimus (TAC) or cyclosporine A (CsA) in patients with preformed non-HLA antibodies, potentially associated rejections and/or their impact on renal function over 1 year.MethodsAll eligible patients were randomized (1:1:1) before transplantation to receive either EVR/TAC, EVR/CsA, or MPA/TAC regimen. The effect of these regimens on the formation of non-HLA antibodies within one year post de novo KTx and the association with clinical events was evaluated descriptively in randomized (n = 268) population.ResultsAt Month 12, in EVR/TAC group, higher incidence of patients negative for AT1R- and ETAR-antibodies (82.2% and 76.7%, respectively) was noted, whereas the incidence of AT1R- and ETAR-antibodies positivity (28.1% and 34.7%, respectively) was higher in the MPA/TAC group. Non-HLA antibodies had no influence on clinical outcomes in any treatment group and no graft loss or death was reported.ConclusionsThe studied combinations of immunosuppressants were safe with no influence on clinical outcomes and suggested minimal exposure of calcineurin inhibitors for better patient management.Clinical Trial Registrationhttps://clinicaltrials.gov/ (NCT01843348; EudraCT number: 2011-005238-21)

    GRIPS - Gamma-Ray Imaging, Polarimetry and Spectroscopy

    Full text link
    We propose to perform a continuously scanning all-sky survey from 200 keV to 80 MeV achieving a sensitivity which is better by a factor of 40 or more compared to the previous missions in this energy range. The Gamma-Ray Imaging, Polarimetry and Spectroscopy (GRIPS) mission addresses fundamental questions in ESA's Cosmic Vision plan. Among the major themes of the strategic plan, GRIPS has its focus on the evolving, violent Universe, exploring a unique energy window. We propose to investigate Îł\gamma-ray bursts and blazars, the mechanisms behind supernova explosions, nucleosynthesis and spallation, the enigmatic origin of positrons in our Galaxy, and the nature of radiation processes and particle acceleration in extreme cosmic sources including pulsars and magnetars. The natural energy scale for these non-thermal processes is of the order of MeV. Although they can be partially and indirectly studied using other methods, only the proposed GRIPS measurements will provide direct access to their primary photons. GRIPS will be a driver for the study of transient sources in the era of neutrino and gravitational wave observatories such as IceCUBE and LISA, establishing a new type of diagnostics in relativistic and nuclear astrophysics. This will support extrapolations to investigate star formation, galaxy evolution, and black hole formation at high redshifts.Comment: to appear in Exp. Astron., special vol. on M3-Call of ESA's Cosmic Vision 2010; 25 p., 25 figs; see also www.grips-mission.e
    • 

    corecore