138 research outputs found
Dynamic Scaling in Diluted Systems Phase Transitions: Deactivation trough Thermal Dilution
Activated scaling is confirmed to hold in transverse field induced phase
transitions of randomly diluted Ising systems. Quantum Monte Carlo calculations
have been made not just at the percolation threshold but well bellow and above
it including the Griffiths-McCoy phase. A novel deactivation phenomena in the
Griffiths-McCoy phase is observed using a thermal (in contrast to random)
dilution of the system.Comment: 4 pages, 4 figures, RevTe
Shared Care, Elder and Family Member Skills Used to Manage Burden
Aim. The aim of this paper is to further develop the construct of Shared Care by comparing and contrasting it to related research, and to show how the construct can be used to guide research and practice.
Background. While researchers have identified negative outcomes for family caregivers caused by providing care, less is known about positive aspects of family care for both members of a family dyad. Understanding family care relationships is important to nurses because family participation in the care of chronically ill elders is necessary to achieve optimal outcomes from nursing interventions. A previous naturalistic inquiry identified a new construct, Shared Care, which was used to describe a family care interaction that contributed to positive care outcomes.
Methods. A literature review was carried out using the databases Medline, CINAHL, and Psych-info and the keywords home care, care receiver, disability, family, communication, decision-making and reciprocity. The results of the review were integrated to suggest how Shared Care could be used to study care difficulties and guide interventions.
Results. The literature confirmed the importance of dyad relationships in family care. Shared Care extended previous conceptualizations of family care by capturing three critical components: communication, decision-making, and reciprocity. Shared Care provides a structure to expand the conceptualization of family care to include both members of a care dyad and account for positive and negative aspects of care.
Conclusions. The extended view provided by the construct of Shared Care offers practitioners and scholars tools to use in the context of our ageing population to improve the effectiveness of family care relationships
Smeared phase transition in a three-dimensional Ising model with planar defects: Monte-Carlo simulations
We present results of large-scale Monte Carlo simulations for a
three-dimensional Ising model with short range interactions and planar defects,
i.e., disorder perfectly correlated in two dimensions. We show that the phase
transition in this system is smeared, i.e., there is no single critical
temperature, but different parts of the system order at different temperatures.
This is caused by effects similar to but stronger than Griffiths phenomena. In
an infinite-size sample there is an exponentially small but finite probability
to find an arbitrary large region devoid of impurities. Such a rare region can
develop true long-range order while the bulk system is still in the disordered
phase. We compute the thermodynamic magnetization and its finite-size effects,
the local magnetization, and the probability distribution of the ordering
temperatures for different samples. Our Monte-Carlo results are in good
agreement with a recent theory based on extremal statistics.Comment: 9 pages, 6 eps figures, final version as publishe
Monte Carlo Study of Cluster-Diameter Distribution: A New Observable to Estimate Correlation Lengths
We report numerical simulations of two-dimensional -state Potts models
with emphasis on a new quantity for the computation of spatial correlation
lengths. This quantity is the cluster-diameter distribution function
, which measures the distribution of the diameter of
stochastically defined cluster. Theoretically it is predicted to fall off
exponentially for large diameter , , where
is the correlation length as usually defined through the large-distance
behavior of two-point correlation functions. The results of our extensive Monte
Carlo study in the disordered phase of the models with , 15, and on
large square lattices of size , , and , respectively, clearly confirm the theoretically predicted behavior.
Moreover, using this observable we are able to verify an exact formula for the
correlation length in the disordered phase at the first-order
transition point with an accuracy of about for all considered
values of . This is a considerable improvement over estimates derived from
the large-distance behavior of standard (projected) two-point correlation
functions, which are also discussed for comparison.Comment: 20 pages, LaTeX + 13 postscript figures. See also
http://www.cond-mat.physik.uni-mainz.de/~janke/doc/home_janke.htm
Crossover and self-averaging in the two-dimensional site-diluted Ising model
Using the newly proposed probability-changing cluster (PCC) Monte Carlo
algorithm, we simulate the two-dimensional (2D) site-diluted Ising model. Since
we can tune the critical point of each random sample automatically with the PCC
algorithm, we succeed in studying the sample-dependent and the sample
average of physical quantities at each systematically. Using the
finite-size scaling (FSS) analysis for , we discuss the importance of
corrections to FSS both in the strong-dilution and weak-dilution regions. The
critical phenomena of the 2D site-diluted Ising model are shown to be
controlled by the pure fixed point. The crossover from the percolation fixed
point to the pure Ising fixed point with the system size is explicitly
demonstrated by the study of the Binder parameter. We also study the
distribution of critical temperature . Its variance shows the power-law
dependence, , and the estimate of the exponent is consistent
with the prediction of Aharony and Harris [Phys. Rev. Lett. {\bf 77}, 3700
(1996)]. Calculating the relative variance of critical magnetization at the
sample-dependent , we show that the 2D site-diluted Ising model
exhibits weak self-averaging.Comment: 6 pages including 6 eps figures, RevTeX, to appear in Phys. Rev.
Scaling and finte-size-scaling in the two dimensional random-coupling Ising ferromagnet
It is shown by Monte Carlo method that the finite size scaling (FSS) holds in
the two dimensional random-coupled Ising ferromagnet. It is also demonstrated
that the form of universal FSS function constructed via novel FSS scheme
depends on the strength of the random coupling for strongly disordered cases.
Monte Carlo measurements of thermodynamic (infinite volume limit) data of the
correlation length () up to along with measurements of
the fourth order cumulant ratio (Binder's ratio) at criticality are reported
and analyzed in view of two competing scenarios. It is demonstrated that the
data are almost exclusively consistent with the scenario of weak universality.Comment: 9 pages, 4figuer
Investigations of the Mars Upper Atmosphere with ExoMars Trace Gas Orbiter
The Martian mesosphere and thermosphere, the region above about 60 km, is not the primary target of the ExoMars 2016 mission but its Trace Gas Orbiter (TGO) can explore it and address many interesting issues, either in-situ during the aerobraking period or remotely during the regular mission. In the aerobraking phase TGO peeks into thermospheric densities and temperatures, in a broad range of latitudes and during a long continuous period. TGO carries two instruments designed for the detection of trace species, NOMAD and ACS, which will use the solar occultation technique. Their regular sounding at the terminator up to very high altitudes in many different molecular bands will represent the first time that an extensive and precise dataset of densities and hopefully temperatures are obtained at those altitudes and local times on Mars. But there are additional capabilities in TGO for studying the upper atmosphere of Mars, and we review them briefly. Our simulations suggest that airglow emissions from the UV to the IR might be observed outside the terminator. If eventually confirmed from orbit, they would supply new information about atmospheric dynamics and variability. However, their optimal exploitation requires a special spacecraft pointing, currently not considered in the regular operations but feasible in our opinion. We discuss the synergy between the TGO instruments, specially the wide spectral range achieved by combining them. We also encourage coordinated operations with other Mars-observing missions capable of supplying simultaneous measurements of its upper atmosphere
Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector
The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements
A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector
A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance
- …