1,575 research outputs found

    Measuring Feedback in Damped Lyman Alpha Systems

    Full text link
    We measure feedback (heating rates) in damped Lyman alpha systems from the cooling rate of the neutral gas. Since cooling occurs through [C II] 158 micron emission, we infer cooling from C II^{*} 1335.7 absorption lines detected with HIRES on the Keck I telescope. The inferred heating rates are about 30 times lower than for the Galaxy ISM. At z = 2.8, the implied star formation rate per unit area is 10^{-2.4+-0.3} solar masses per kpc^{2} per year, and the the star formation rate per unit comoving volume is 10^{-0.8+-0.2} solar masses per Mpc^{3} per year. This is the first measurement of star formation rates in objects likely to be the progenitors of current galaxies.Comment: 7 pages, 5 figures, Proceedings of the ESO/ECF/STScI Workshop on Deep Field

    Understanding Physical Conditions in High Redshift Galaxies through C I Fine Structure Lines: Data and Methodology

    Full text link
    We probe the physical conditions in high redshift galaxies, specifically, the Damped Lyman-alpha Systems (DLAs) using neutral carbon (CI) fine structure lines and molecular hydrogen (H2). We report five new detections of CI and analyze the CI in an additional 2 DLAs with previously published data. We also present one new detection of H2 in a DLA. We present a new method of analysis that simultaneously constrains \emph{both} the volume density and the temperature of the gas, as opposed to previous studies that a priori assumed a gas temperature. We use only the column density of CI measured in the fine structure states and the assumption of ionization equilibrium in order to constrain the physical conditions in the gas. We present a sample of 11 CI velocity components in 6 DLAs and compare their properties to those derived by the global CII* technique. The resulting median values for this sample are: = 69 cm^{-3}, = 50 K, and = 3.86 cm^{-3} K, with standard deviations, sigma_{n(HI)} = 134 cm^{-3}, sigma_T = 52 K, and sigma_{log(P/k)} = 3.68 cm^{-3} K. This can be compared with the integrated median values for the same DLAs : = 2.8 cm^{-3}, = 139 K, and = 2.57 cm^{-3} K, with standard deviations sigma_{n(HI)} = 3.0 cm^{-3}, sigma_T = 43 K, and sigma_{log(P/k)} = 0.22 cm^{-3} K. Interestingly, the pressures measured in these high redshift CI clouds are similar to those found in the Milky Way. We conclude that the CI gas is tracing a higher-density, higher-pressure region, possibly indicative of post-shock gas or a photodissociation region on the edge of a molecular cloud. We speculate that these clouds may be direct probes of the precursor sites of star formation in normal galaxies at high redshift.Comment: Accepted for publication in Ap

    Are Simulations of CDM Consistent with Galactic-Scale Observations at High Redshift?

    Full text link
    We compare new observations on the kinematic characteristics of the damped Lya systems against results from numerical SPH simulations to test the predictions of hierarchical galaxy formation. This exercise is particularly motivated by recent numerical results on the cross-section of damped Lya systems. Our analysis focuses on the velocity widths of ~50 low-ion absorption profiles from our sample of z>1.5 damped Lya systems. The results indicate that current numerical simulations fail to match the damped Lya observations at high confidence levels (>99.9%). Although we do not believe that our results present an insurmountable challenge to the paradigm of hierarchical cosmology, the damped Lya observations suggest that current numerical SPH simulations overlook an integral aspect of galaxy formation.Comment: 4 pages, 2 color figures; Submitted to ApJ
    corecore