4 research outputs found

    Influence of tumor location on the composition of immune infiltrate and its impact on patient survival. Lessons from DLBCL and animal models.

    No full text
    Diffuse large B-cell lymphomas (DLBCLs) are heterogeneous diseases growing either in nodal or extranodal locations including the central nervous system. One key issue is to decipher the prognosis value of immune cells infiltrating these tumors as DLBCLs developing in sanctuaries are more aggressive than nodal DLCBLs. Here, we summarize available data from the literature regarding the prognostic values of the different immune cell types found in these two types of human primary tumors (ie nodal vs brain). In nodal DLBCLs, memory T-cells and dendritic cells (DCs) densities are of good prognostic value whereas the influence of regulatory T-cells (Tregs) is less clear, in accordance with other types of cancers. Datas for primary central nervous system lymphomas (PCNSLs) are very sparse for these cell types. By contrast, CD8+ cytotoxic T-cells seem to be of poor prognosis in either location. Their presence is linked to a loss of MHC expression providing a possible immune escape mechanism for these tumors. Clearly, tumor associated macrophages are not associated to a significant prognostic value even in the brain where they highly infiltrate the tumor. Animal models indicate some specific features of lymphoma developing in sanctuaries by comparison to splenic location, with a higher infiltration of Tregs and less DCs, most likely reflecting the immunosuppressive context of these organs. All these informations illustrate the high impact of the immune system on patient outcome, encourage the pursuit of the immune environment’s analysis and of immunotherapeutic approaches

    Lung tumor microenvironment induces specific gene expression signature in intratumoral NK cells

    No full text
    Natural Killer (NK) cells are able to recognize and kill tumor cells, however whether they contribute to tumor immunosurveillance is still debated. Our previous studies demonstrated the presence of NK cells in human lung tumors. Their comparison with NK cells from non-tumoral lung tissues and with blood NK cells from the same individuals revealed a decreased expression of some NK receptors and impaired ex vivo cytotoxic functions occurring specifically in NK cells isolated from the tumor microenvironment. The aim of the present study was to characterize the transcriptional profile of such intratumoral NK cells, by comparative microarray analysis of sorted NK cells isolated from non tumoral (NonTum-NK) and tumoral (Tum-NK) lung tissues of twelve Non-Small Cell Lung Cancer (NSCLC) patients. Our results reveal a specific gene expression signature of Tum-NK cells particularly in activation processes and cytotoxicity, confirming that tumor environment induces modifications in NK cells biology. Indeed, intratumoral NK cells display higher expression levels of NKp44, NKG2A, Granzyme A and K and Fas mRNA. A particular pattern of receptors involved in chemotaxis was also observed, with an overexpression of CXCR5 and CXCR6, and a lower expression of CX3CR1 and S1PR1 genes in Tum-NK as compared to NonTum-NK cells. The precise identification of the molecular pathways modulated in the tumor environment will help to decipher the role of NK cells in tumor immunosurveillance and will open future investigations to manipulate their antitumoral functions
    corecore