66 research outputs found

    Culture Enriched Molecular Profiling of the Cystic Fibrosis Airway Microbiome

    Get PDF
    The microbiome of the respiratory tract, including the nasopharyngeal and oropharyngeal microbiota, is a dynamic community of microorganisms that is highly diverse. The cystic fibrosis (CF) airway microbiome refers to the polymicrobial communities present in the lower airways of CF patients. It is comprised of chronic opportunistic pathogens (such as Pseudomonas aeruginosa) and a variety of organisms derived mostly from the normal microbiota of the upper respiratory tract. The complexity of these communities has been inferred primarily from culture independent molecular profiling. As with most microbial communities it is generally assumed that most of the organisms present are not readily cultured. Our culture collection generated using more extensive cultivation approaches, reveals a more complex microbial community than that obtained by conventional CF culture methods. To directly evaluate the cultivability of the airway microbiome, we examined six samples in depth using culture-enriched molecular profiling which combines culture-based methods with the molecular profiling methods of terminal restriction fragment length polymorphisms and 16S rRNA gene sequencing. We demonstrate that combining culture-dependent and culture-independent approaches enhances the sensitivity of either approach alone. Our techniques were able to cultivate 43 of the 48 families detected by deep sequencing; the five families recovered solely by culture-independent approaches were all present at very low abundance (<0.002% total reads). 46% of the molecular signatures detected by culture from the six patients were only identified in an anaerobic environment, suggesting that a large proportion of the cultured airway community is composed of obligate anaerobes. Most significantly, using 20 growth conditions per specimen, half of which included anaerobic cultivation and extended incubation times we demonstrate that the majority of bacteria present can be cultured

    Volume III. DUNE far detector technical coordination

    Get PDF
    open966siAcknowledgments This document was prepared by the DUNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. The DUNE collaboration also acknowledges the international, national, and regional funding agencies supporting the institutions who have contributed to completing this Technical Design Report.The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay-these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- A nd dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module.openAbi B.; Acciarri R.; Acero M.A.; Adamov G.; Adams D.; Adinolfi M.; Ahmad Z.; Ahmed J.; Alion T.; Monsalve S.A.; Alt C.; Anderson J.; Andreopoulos C.; Andrews M.; Andrianala F.; Andringa S.; Ankowski A.; Antonova M.; Antusch S.; Aranda-Fernandez A.; Ariga A.; Arnold L.O.; Arroyave M.A.; Asaadi J.; Aurisano A.; Aushev V.; Autiero D.; Azfar F.; Back H.; Back J.J.; Backhouse C.; Baesso P.; Bagby L.; Bajou R.; Balasubramanian S.; Baldi P.; Bambah B.; Barao F.; Barenboim G.; Barker G.; Barkhouse W.; Barnes C.; Barr G.; Monarca J.B.; Barros N.; Barrow J.L.; Bashyal A.; Basque V.; Bay F.; Alba J.B.; Beacom J.F.; Bechetoille E.; Behera B.; Bellantoni L.; Bellettini G.; Bellini V.; Beltramello O.; Belver D.; Benekos N.; Neves F.B.; Berger J.; Berkman S.; Bernardini P.; Berner R.M.; Berns H.; Bertolucci S.; Betancourt M.; Bezawada Y.; Bhattacharjee M.; Bhuyan B.; Biagi S.; Bian J.; Biassoni M.; Biery K.; Bilki B.; Bishai M.; Bitadze A.; Blake A.; Siffert B.B.; Blaszczyk F.; Blazey G.; Blucher E.; Boissevain J.; Bolognesi S.; Bolton T.; Bonesini M.; Bongrand M.; Bonini F.; Booth A.; Booth C.; Bordoni S.; Borkum A.; Boschi T.; Bostan N.; Bour P.; Boyd S.; Boyden D.; Bracinik J.; Braga D.; Brailsford D.; Brandt A.; Bremer J.; Brew C.; Brianne E.; Brice S.J.; Brizzolari C.; Bromberg C.; Brooijmans G.; Brooke J.; Bross A.; Brunetti G.; Buchanan N.; Budd H.; Caiulo D.; Calafiura P.; Calcutt J.; Calin M.; Calvez S.; Calvo E.; Camilleri L.; Caminata A.; Campanelli M.; Caratelli D.; Carini G.; Carlus B.; Carniti P.; Terrazas I.C.; Carranza H.; Castillo A.; Castromonte C.; Cattadori C.; Cavalier F.; Cavanna F.; Centro S.; Cerati G.; Cervelli A.; Villanueva A.C.; Chalifour M.; Chang C.; Chardonnet E.; Chatterjee A.; Chattopadhyay S.; Chaves J.; Chen H.; Chen M.; Chen Y.; Cherdack D.; Chi C.; Childress S.; Chiriacescu A.; Cho K.; Choubey S.; Christensen A.; Christian D.; Christodoulou G.; Church E.; Clarke P.; Coan T.E.; Cocco A.G.; Coelho J.; Conley E.; Conrad J.; Convery M.; Corwin L.; Cotte P.; Cremaldi L.; Cremonesi L.; Crespo-Anadon J.I.; Cristaldo E.; Cross R.; Cuesta C.; Cui Y.; Cussans D.; Dabrowski M.; Motta H.D.; Peres L.D.S.; David Q.; Davies G.S.; Davini S.; Dawson J.; De K.; Almeida R.M.D.; Debbins P.; Bonis I.D.; Decowski M.; Gouvea A.D.; Holanda P.C.D.; Astiz I.L.D.I.; Deisting A.; Jong P.D.; Delbart A.; Delepine D.; Delgado M.; Dell'acqua A.; Lurgio P.D.; Neto J.R.D.M.; Demuth D.M.; Dennis S.; Densham C.; Deptuch G.; Roeck A.D.; Romeri V.D.; Vries J.D.; Dharmapalan R.; Dias M.; Diaz F.; Diaz J.; Domizio S.D.; Giulio L.D.; Ding P.; Noto L.D.; Distefano C.; Diurba R.; Diwan M.; Djurcic Z.; Dokania N.; Dolinski M.; Domine L.; Douglas D.; Drielsma F.; Duchesneau D.; Duffy K.; Dunne P.; Durkin T.; Duyang H.; Dvornikov O.; Dwyer D.; Dyshkant A.; Eads M.; Edmunds D.; Eisch J.; Emery S.; Ereditato A.; Escobar C.; Sanchez L.E.; Evans J.J.; Ewart E.; Ezeribe A.C.; Fahey K.; Falcone A.; Farnese C.; Farzan Y.; Felix J.; Fernandez-Martinez E.; Menendez P.F.; Ferraro F.; Fields L.; Filkins A.; Filthaut F.; Fitzpatrick R.S.; Flanagan W.; Fleming B.; Flight R.; Fowler J.; Fox W.; Franc J.; Francis K.; Franco D.; Freeman J.; Freestone J.; Fried J.; Friedland A.; Fuess S.; Furic I.; Furmanski A.P.; Gago A.; Gallagher H.; Gallego-Ros A.; Gallice N.; Galymov V.; Gamberini E.; Gamble T.; Gandhi R.; Gandrajula R.; Gao S.; Garcia-Gamez D.; Garcia-Peris M.A.; Gardiner S.; Gastler D.; Ge G.; Gelli B.; Gendotti A.; Gent S.; Ghorbani-Moghaddam Z.; Gibin D.; Gil-Botella I.; Girerd C.; Giri A.; Gnani D.; Gogota O.; Gold M.; Gollapinni S.; Gollwitzer K.; Gomes R.A.; Bermeo L.G.; Fajardo L.S.G.; Gonnella F.; Gonzalez-Cuevas J.; Goodman M.C.; Goodwin O.; Goswami S.; Gotti C.; Goudzovski E.; Grace C.; Graham M.; Gramellini E.; Gran R.; Granados E.; Grant A.; Grant C.; Gratieri D.; Green P.; Green S.; Greenler L.; Greenwood M.; Greer J.; Griffith C.; Groh M.; Grudzinski J.; Grzelak K.; Gu W.; Guarino V.; Guenette R.; Guglielmi A.; Guo B.; Guthikonda K.; Gutierrez R.; Guzowski P.; Guzzo M.M.; Gwon S.; Habig A.; Hackenburg A.; Hadavand H.; Haenni R.; Hahn A.; Haigh J.; Haiston J.; Hamernik T.; Hamilton P.; Han J.; Harder K.; Harris D.A.; Hartnell J.; Hasegawa T.; Hatcher R.; Hazen E.; Heavey A.; Heeger K.M.; Hennessy K.; Henry S.; Morquecho M.H.; Herner K.; Hertel L.; Hesam A.S.; Hewes J.; Pichardo A.H.; Hill T.; Hillier S.J.; Himmel A.; Hoff J.; Hohl C.; Holin A.; Hoppe E.; Horton-Smith G.A.; Hostert M.; Hourlier A.; Howard B.; Howell R.; Huang J.; Huang J.; Hugon J.; Iles G.; Iliescu A.M.; Illingworth R.; Ioannisian A.; Itay R.; Izmaylov A.; James E.; Jargowsky B.; Jediny F.; Jesus-Valls C.; Ji X.; Jiang L.; Jimenez S.; Jipa A.; Joglekar A.; Johnson C.; Johnson R.; Jones B.; Jones S.; Jung C.; Junk T.; Jwa Y.; Kabirnezhad M.; Kaboth A.; Kadenko I.; Kamiya F.; Karagiorgi G.; Karcher A.; Karolak M.; Karyotakis Y.; Kasai S.; Kasetti S.P.; Kashur L.; Kazaryan N.; Kearns E.; Keener P.; Kelly K.J.; Kemp E.; Ketchum W.; Kettell S.; Khabibullin M.; Khotjantsev A.; Khvedelidze A.; Kim D.; King B.; Kirby B.; Kirby M.; Klein J.; Koehler K.; Koerner L.W.; Kohn S.; Koller P.P.; Kordosky M.; Kosc T.; Kose U.; Kostelecky V.; Kothekar K.; Krennrich F.; Kreslo I.; Kudenko Y.; Kudryavtsev V.; Kulagin S.; Kumar J.; Kumar R.; Kuruppu C.; Kus V.; Kutter T.; Lambert A.; Lande K.; Lane C.E.; Lang K.; Langford T.; Lasorak P.; Last D.; Lastoria C.; Laundrie A.; Lawrence A.; Lazanu I.; Lazur R.; Le T.; Learned J.; Lebrun P.; Miotto G.L.; Lehnert R.; De Oliveira M.L.; Leitner M.; Leyton M.; Li L.; Li S.; Li S.; Li T.; Li Y.; Liao H.; Lin C.; Lin S.; Lister A.; Littlejohn B.R.; Liu J.; Lockwitz S.; Loew T.; Lokajicek M.; Lomidze I.; Long K.; Loo K.; Lorca D.; Lord T.; Losecco J.; Louis W.C.; Luk K.; Luo X.; Lurkin N.; Lux T.; Luzio V.P.; MacFarland D.; MacHado A.; MacHado P.; MacIas C.; MacIer J.; Maddalena A.; Madigan P.; Magill S.; Mahn K.; Maio A.; Maloney J.A.; Mandrioli G.; Maneira J.C.; Manenti L.; Manly S.; Mann A.; Manolopoulos K.; Plata M.M.; Marchionni A.; Marciano W.; Marfatia D.; Mariani C.; Maricic J.; Marinho F.; Marino A.D.; Marshak M.; Marshall C.; Marshall J.; Marteau J.; Martin-Albo J.; Martinez N.; Caicedo D.A.M.; Martynenko S.; Mason K.; Mastbaum A.; Masud M.; Matsuno S.; Matthews J.; Mauger C.; Mauri N.; Mavrokoridis K.; Mazza R.; Mazzacane A.; Mazzucato E.; McCluskey E.; McConkey N.; McFarland K.S.; McGrew C.; McNab A.; Mefodiev A.; Mehta P.; Melas P.; Mellinato M.; Mena O.; Menary S.; Mendez H.; Menegolli A.; Meng G.; Messier M.; Metcalf W.; Mewes M.; Meyer H.; Miao T.; Michna G.; Miedema T.; Migenda J.; Milincic R.; Miller W.; Mills J.; Milne C.; Mineev O.; Miranda O.G.; Miryala S.; Mishra C.; Mishra S.; Mislivec A.; Mladenov D.; Mocioiu I.; Moffat K.; Moggi N.; Mohanta R.; Mohayai T.A.; Mokhov N.; Molina J.A.; Bueno L.M.; Montanari A.; Montanari C.; Montanari D.; Zetina L.M.M.; Moon J.; Mooney M.; Moor A.; Moreno D.; Morgan B.; Morris C.; Mossey C.; Motuk E.; Moura C.A.; Mousseau J.; Mu W.; Mualem L.; Mueller J.; Muether M.; Mufson S.; Muheim F.; Muir A.; Mulhearn M.; Muramatsu H.; Murphy S.; Musser J.; Nachtman J.; Nagu S.; Nalbandyan M.; Nandakumar R.; Naples D.; Narita S.; Navas-Nicolas D.; Nayak N.; Nebot-Guinot M.; Necib L.; Negishi K.; Nelson J.K.; Nesbit J.; Nessi M.; Newbold D.; Newcomer M.; Newhart D.; Nichol R.; Niner E.; Nishimura K.; Norman A.; Northrop R.; Novella P.; Nowak J.A.; Oberling M.; Campo A.O.D.; Olivier A.; Onel Y.; Onishchuk Y.; Ott J.; Pagani L.; Pakvasa S.; Palamara O.; Palestini S.; Paley J.M.; Pallavicini M.; Palomares C.; Pantic E.; Paolone V.; Papadimitriou V.; Papaleo R.; Papanestis A.; Paramesvaran S.; Parke S.; Parsa Z.; Parvu M.; Pascoli S.; Pasqualini L.; Pasternak J.; Pater J.; Patrick C.; Patrizii L.; Patterson R.B.; Patton S.; Patzak T.; Paudel A.; Paulos B.; Paulucci L.; Pavlovic Z.; Pawloski G.; Payne D.; Pec V.; Peeters S.J.; Penichot Y.; Pennacchio E.; Penzo A.; Peres O.L.; Perry J.; Pershey D.; Pessina G.; Petrillo G.; Petta C.; Petti R.; Piastra F.; Pickering L.; Pietropaolo F.; Pillow J.; Plunkett R.; Poling R.; Pons X.; Poonthottathil N.; Pordes S.; Potekhin M.; Potenza R.; Potukuchi B.V.; Pozimski J.; Pozzato M.; Prakash S.; Prakash T.; Prince S.; Prior G.; Pugnere D.; Qi K.; Qian X.; Raaf J.; Raboanary R.; Radeka V.; Rademacker J.; Radics B.; Rafique A.; Raguzin E.; Rai M.; Rajaoalisoa M.; Rakhno I.; Rakotondramanana H.; Rakotondravohitra L.; Ramachers Y.; Rameika R.; Delgado M.R.; Ramson B.; Rappoldi A.; Raselli G.; Ratoff P.; Ravat S.; Razafinime H.; Real J.; Rebel B.; Redondo D.; Reggiani-Guzzo M.; Rehak T.; Reichenbacher J.; Reitzner S.D.; Renshaw A.; Rescia S.; Resnati F.; Reynolds A.; Riccobene G.; Rice L.C.; Rielage K.; Rigaut Y.; Rivera D.; Rochester L.; Roda M.; Rodrigues P.; Alonso M.R.; Rondon J.R.; Roeth A.; Rogers H.; Rosauro-Alcaraz S.; Rossella M.; Rout J.; Roy S.; Rubbia A.; Rubbia C.; Russell B.; Russell J.; Ruterbories D.; Saakyan R.; Sacerdoti S.; Safford T.; Sahu N.; Sala P.; Samios N.; Sanchez M.; Sanders D.A.; Sankey D.; Santana S.; Santos-Maldonado M.; Saoulidou N.; Sapienza P.; Sarasty C.; Sarcevic I.; Savage G.; Savinov V.; Scaramelli A.; Scarff A.; Scarpelli A.; Schaffer T.; Schellman H.; Schlabach P.; Schmitz D.; Scholberg K.; Schukraft A.; Segreto E.; Sensenig J.; Seong I.; Sergi A.; Sergiampietri F.; Sgalaberna D.; Shaevitz M.; Shafaq S.; Shamma M.; Sharma H.R.; Sharma R.; Shaw T.; Shepherd-Themistocleous C.; Shin S.; Shooltz D.; Shrock R.; Simard L.; Simos N.; Sinclair J.; Sinev G.; Singh J.; Singh V.; Sipos R.; Sippach F.; Sirri G.; Sitraka A.; Siyeon K.; Smargianaki D.; Smith A.; Smith A.; Smith E.; Smith P.; Smolik J.; Smy M.; Snopok P.; Nunes M.S.; Sobel H.; Soderberg M.; Salinas C.J.S.; Soldner-Rembold S.; Solomey N.; Solovov V.; Sondheim W.E.; Sorel M.; Soto-Oton J.; Sousa A.; Soustruznik K.; Spagliardi F.; Spanu M.; Spitz J.; Spooner N.J.; Spurgeon K.; Staley R.; Stancari M.; Stanco L.; Steiner H.; Stewart J.; Stillwell B.; Stock J.; Stocker F.; Stokes T.; Strait M.; Strauss T.; Striganov S.; Stuart A.; Summers D.; Surdo A.; Susic V.; Suter L.; Sutera C.; Svoboda R.; Szczerbinska B.; Szelc A.; Talaga R.; Tanaka H.; Oregui B.T.; Tapper A.; Tariq S.; Tatar E.; Tayloe R.; Teklu A.; Tenti M.; Terao K.; Ternes C.A.; Terranova F.; Testera G.; Thea A.; Thompson J.L.; Thorn C.; Timm S.; Tonazzo A.; Torti M.; Tortola M.; Tortorici F.; Totani D.; Toups M.; Touramanis C.; Trevor J.; Trzaska W.H.; Tsai Y.T.; Tsamalaidze Z.; Tsang K.; Tsverava N.; Tufanli S.; Tull C.; Tyley E.; Tzanov M.; Uchida M.A.; Urheim J.; Usher T.; Vagins M.; Vahle P.; Valdiviesso G.; Valencia E.; Vallari Z.; Valle J.W.; Vallecorsa S.; Berg R.V.; De Water R.G.V.; Forero D.V.; Varanini F.; Vargas D.; Varner G.; Vasel J.; Vasseur G.; Vaziri K.; Ventura S.; Verdugo A.; Vergani S.; Vermeulen M.A.; Verzocchi M.; De Souza H.V.; Vignoli C.; Vilela C.; Viren B.; Vrba T.; Wachala T.; Waldron A.V.; Wallbank M.; Wang H.; Wang J.; Wang Y.; Wang Y.; Warburton K.; Warner D.; Wascko M.; Waters D.; Watson A.; Weatherly P.; Weber A.; Weber M.; Wei H.; Weinstein A.; Wenman D.; Wetstein M.; While M.R.; White A.; Whitehead L.H.; Whittington D.; Wilking M.J.; Wilkinson C.; Williams Z.; Wilson F.; Wilson R.J.; Wolcott J.; Wongjirad T.; Wood K.; Wood L.; Worcester E.; Worcester M.; Wret C.; Wu W.; Wu W.; Xiao Y.; Yang G.; Yang T.; Yershov N.; Yonehara K.; Young T.; Yu B.; Yu J.; Zalesak J.; Zambelli L.; Zamorano B.; Zani A.; Zazueta L.; Zeller G.; Zennamo J.; Zeug K.; Zhang C.; Zhao M.; Zhivun E.; Zhu G.; Zimmerman E.D.; Zito M.; Zucchelli S.; Zuklin J.; Zutshi V.; Zwaska R.Abi B.; Acciarri R.; Acero M.A.; Adamov G.; Adams D.; Adinolfi M.; Ahmad Z.; Ahmed J.; Alion T.; Monsalve S.A.; Alt C.; Anderson J.; Andreopoulos C.; Andrews M.; Andrianala F.; Andringa S.; Ankowski A.; Antonova M.; Antusch S.; Aranda-Fernandez A.; Ariga A.; Arnold L.O.; Arroyave M.A.; Asaadi J.; Aurisano A.; Aushev V.; Autiero D.; Azfar F.; Back H.; Back J.J.; Backhouse C.; Baesso P.; Bagby L.; Bajou R.; Balasubramanian S.; Baldi P.; Bambah B.; Barao F.; Barenboim G.; Barker G.; Barkhouse W.; Barnes C.; Barr G.; Monarca J.B.; Barros N.; Barrow J.L.; Bashyal A.; Basque V.; Bay F.; Alba J.B.; Beacom J.F.; Bechetoille E.; Behera B.; Bellantoni L.; Bellettini G.; Bellini V.; Beltramello O.; Belver D.; Benekos N.; Neves F.B.; Berger J.; Berkman S.; Bernardini P.; Berner R.M.; Berns H.; Bertolucci S.; Betancourt M.; Bezawada Y.; Bhattacharjee M.; Bhuyan B.; Biagi S.; Bian J.; Biassoni M.; Biery K.; Bilki B.; Bishai M.; Bitadze A.; Blake A.; Siffert B.B.; Blaszczyk F.; Blazey G.; Blucher E.; Boissevain J.; Bolognesi S.; Bolton T.; Bonesini M.; Bongrand M.; Bonini F.; Booth A.; Booth C.; Bordoni S.; Borkum A.; Boschi T.; Bostan N.; Bour P.; Boyd S.; Boyden D.; Bracinik J.; Braga D.; Brailsford D.; Brandt A.; Bremer J.; Brew C.; Brianne E.; Brice S.J.; Brizzolari C.; Bromberg C.; Brooijmans G.; Brooke J.; Bross A.; Brunetti G.; Buchanan N.; Budd H.; Caiulo D.; Calafiura P.; Calcutt J.; Calin M.; Calvez S.; Calvo E.; Camilleri L.; Caminata A.; Campanelli M.; Caratelli D.; Carini G.; Carlus B.; Carniti P.; Terrazas I.C.; Carranza H.; Castillo A.; Castromonte C.; Cattadori C.; Cavalier F.; Cavanna F.; Centro S.; Cerati G.; Cervelli A.; Villanueva A.C.; Chalifour M.; Chang C.; Chardonnet E.; Chatterjee A.; Chattopadhyay S.; Chaves J.; Chen H.; Chen M.; Chen Y.; Cherdack D.; Chi C.; Childress S.; Chiriacescu A.; Cho K.; Choubey S.; Christensen A.; Christian D.; Christodoulou G.; Church E.; Clarke P.; Coan T.E.; Cocco A.G.; Coelho J.; Conley E.; Conrad J.; Convery M.; Corwin L.; Cotte P.; Cremaldi L.; Cremonesi L.; Crespo-Anadon J.I.; Cristaldo E.; Cross R.; Cuesta C.; Cui Y.; Cussans D.; Dabrowski M.; Motta H.D.; Peres L.D.S.; David Q.; Davies G.S.; Davini S.; Dawson J.; De K.; Almeida R.M.D.; Debbins P.; Bonis I.D.; Decowski M.; Gouvea A.D.; Holanda P.C.D.; Astiz I.L.D.I.; Deisting A.; Jong P.D.; Delbart A.; Delepine D.; Delgado M.; Dell'acqua A.; Lurgio P.D.; Neto J.R.D.M.; Demuth D.M.; Dennis S.; Densham C.; Deptuch G.; Roeck A.D.; Romeri V.D.; Vries J.D.; Dharmapalan R.; Dias M.; Diaz F.; Diaz J.; Domizio S.D.; Giulio L.D.; Ding P.; Noto L.D.; Distefano C.; Diurba R.; Diwan M.; Djurcic Z.; Dokania N.; Dolinski M.; Domine L.; Douglas D.; Drielsma F.; Duchesneau D.; Duffy K.; Dunne P.; Durkin T.; Duyang H.; Dvornikov O.; Dwyer D.; Dyshkant A.; Eads M.; Edmunds D.; Eisch J.; Emery S.; Ereditato A.; Escobar C.; Sanchez L.E.; Evans J.J.; Ewart E.; Ezeribe A.C.; Fahey K.; Falcone A.; Farnese C.; Farzan Y.; Felix J.; Fernandez-Martinez E.; Menendez P.F.; Ferraro F.; Fields L.; Filkins A.; Filthaut F.; Fitzpatrick R.S.; Flanagan W.; Fleming B.; Flight R.; Fowler J.; Fox W.; Franc J.; Francis K.; Franco D.; Freeman J.; Freestone J.; Fried J.; Friedland A.; Fuess S.; Furic I.; Furmanski A.P.; Gago A.; Gallagher H.; Gallego-Ros A.; Gallice N.; Galymov V.; Gamberini E.; Gamble T.; Gandhi R.; Gandrajula R.; Gao S.; Garcia-Gamez D.; Garcia-Peris M.A.; Gardiner S.; Gastler D.; Ge G.; Gelli B.; Gendotti A.; Gent S.; Ghorbani-Moghaddam Z.; Gibin D.; Gil-Botella I.; Girerd C.; Giri A.; Gnani D.; Gogota O.; Gold M.; Gollapinni S.; Gollwitzer K.; Gomes R.A.; Bermeo L.G.; Fajardo L.S.G.; Gonnella F.; Gonzalez-Cuevas J.; Goodman M.C.; Goodwin O.; Goswami S.; Gotti C.; Goudzovski E.; Grace C.; Graham M.; Gramellini E.; Gran R.; Granados E.; Grant A.; Grant C.; Gratieri D.; Green P.; Green S.; Greenler L.; Greenwood M.; Greer J.; Griffith C.; Groh M.; Grudzinski J.; Grzelak K.; Gu W.; Guarino V.; Guenette R.; Guglielmi A.; Guo B.; Guthikonda K.; Gutierrez R.; Guzowski P.; Guzzo M.M.; Gwon S.; Habig A.; Hackenburg A.; Hadavand H.; Haenni R.; Hahn A.; Haigh J.; Haiston J.; Hamernik T.; Hamilton P.; Han J.; Harder K.; Harris D.A.; Hartnell J.; Hasegawa T.; Hatcher R.; Hazen E.; Heavey A.; Heeger K.M.; Hennessy K.; Henry S.; Morquecho M.H.; Herner K.; Hertel L.; Hesam A.S.; Hewes J.; Pichardo A.H.; Hill T.; Hillier S.J.; Himmel A.; Hoff J.; Hohl C.; Holin A.; Hoppe E.; Horton-Smith G.A.; Hostert M.; Hourlier A.; Howard B.; Howell R.; Huang J.; Huang J.; Hugon J.; Iles G.; Iliescu A.M.; Illingworth R.; Ioannisian A.; Itay R.; Izmaylov A.; James E.; Jargowsky B.; Jediny F.; Jesus-Valls C.; Ji X.; Jiang L.; Jimenez S.; Jipa A.; Joglekar A.; Johnson C.; Johnson R.; Jones B.; Jones S.; Jung C.; Junk T.; Jwa Y.; Kabirnezhad M.; Kaboth A.; Kadenko I.; Kamiya F.; Karagiorgi G.; Karcher A.; Karolak M.; Karyotakis Y.; Kasai S.; Kasetti S.P.; Kashur L.; Kazaryan N.; Kearns E.; Keener P.; Kelly K.J.; Kemp E.; Ketchum W.; Kettell S.; Khabibullin M.; Khotjantsev A.; Khvedelidze A.; Kim D.; King B.; Kirby B.; Kirby M.; Klein J.; Koehler K.; Koerner L.W.; Kohn S.; Koller P.P.; Kordosky M.; Kosc T.; Kose U.; Kostelecky V.; Kothekar K.; Krennrich F.; Kreslo I.; Kudenko Y.; Kudryavtsev V.; Kulagin S.; Kumar J.; Kumar R.; Kuruppu C.; Kus V.; Kutter T.; Lambert A.; Lande K.; Lane C.E.; Lang K.; Langford T.; Lasorak P.; Last D.; Lastoria C.; Laundrie A.; Lawrence A.; Lazanu I.; Lazur R.; Le T.; Learned J.; Lebrun P.; Miotto G.L.; Lehnert R.; De Oliveira M.L.; Leitner M.; Leyton M.; Li L.; Li S.; Li S.; Li T.; Li Y.; Liao H.; Lin C.; Lin S.; Lister A.; Littlejohn B.R.; Liu J.; Lockwitz S.; Loew T.; Lokajicek M.; Lomidze I.; Long K.; Loo K.; Lorca D.; Lord T.; Losecco J.; Louis W.C.; Luk K.; Luo X.; Lurkin N.; Lux T.; Luzio V.P.; MacFarland D.; MacHado A.; MacHado P.; MacIas C.; MacIer J.; Maddalena A.; Madigan P.; Magill S.; Mahn K.; Maio A.; Maloney J.A.; Mandrioli G.; Maneira J.C.; Manenti L.; Manly S.; Mann A.; Manolopoulos K.; Plata M.M.; Marchionni A.; Marciano W.; Marfatia D.; Mariani C.; Maricic J.; Marinho F.; Marino A.D.; Marshak M.; Marshall C.; Marshall J.; Marteau J.; Martin-Albo J.; Martinez N.; Caicedo D.A.M.; Martynenko S.; Mason K.; Mastbaum A.; Masud M.; Matsuno S.; Matthews J.; Mauger C.; Mauri N.; Mavrokoridis K.; Mazza R.; Mazzacane A.; Mazzucato E.; McCluskey E.; McConkey N.; McFarland K.S.; McGrew C.; McNab A.; Mefodiev A.; Mehta P.; Melas P.; Mellinato M.; Mena O.; Menary S.; Mendez H.; Menegolli A.; Meng G.; Messier M.; Metcalf W.; Mewes M.; Meyer H.; Miao T.; Michna G.; Miedema T.; Migenda J.; Milincic R.; Miller W.; Mills J.; Milne C.; Mineev O.; Miranda O.G.; Miryala S.; Mishra C.; Mishra S.; Mislivec A.; Mladenov D.; Mocioiu I.; Moffat K.; Moggi N.; Mohanta R.; Mohayai T.A.; Mokhov N.; Molina J.A.; Bueno L.M.; Montanari A.; Montanari C.; Montanari D.; Zetina L.M.M.; Moon J.; Mooney M.; Moor A.; Moreno D.; Morgan B.; Morris C.; Mossey C.; Motuk E.; Moura C.A.; Mousseau J.; Mu W.; Mualem L.; Mueller J.; Muether M.; Mufson S.; Muheim F.; Muir A.; Mulhearn M.; Muramatsu H.; Murphy S.; Musser J.; Nachtman J.; Nagu S.; Nalbandyan M.; Nandakumar R.; Naples D.; Narita S.; Navas-Nicolas D.; Nayak N.; Nebot-Guinot M.; Necib L.; Negishi K.; Nelson J.K.; Nesbit J.; Nessi M.; Newbold D.; Newcomer M.; Newhart D.; Nichol R.; Niner E.; Nishimura K.; Norman A.; Northrop R.; Novella P.; Nowak J.A.; Oberling M.; Campo A.O.D.; Olivier A.; Onel Y.; Onishchuk Y.; Ott J.; Pagani L.; Pakvasa S.; Palamara O.; Palestini S.; Paley J.M.; Pallavicini M.; Palomares C.; Pantic E.; Paolone V.; Papadimitriou V.; Papaleo R.; Papanestis A.; Paramesvaran S.; Parke S.; Parsa Z.; Parvu M.; Pascoli S.; Pasqualini L.; Pasternak J.; Pater J.; Patrick C.; Patrizii L.; Patterson R.B.; Patton S.; Patzak T.; Paudel A.; Paulos B.; Paulucci L.; Pavlovic Z.; Pawloski G.; Payne D.; Pec V.; Peeters S.J.; Penichot Y.; Pennacchio E.; Penzo A.; Peres O.L.; Perry J.; Pershey D.; Pessina G.; Petrillo G.; Petta C.; Petti R.; Piastra F.; Pickering

    Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC

    Get PDF
    DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6  ×  6  ×  6 m 3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties

    Supernova neutrino burst detection with the Deep Underground Neutrino Experiment

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE's ability to constrain the Îœe spectral parameters of the neutrino burst will be considered

    Experiment Simulation Configurations Approximating DUNE TDR

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment consisting of a high-power, broadband neutrino beam, a highly capable near detector located on site at Fermilab, in Batavia, Illinois, and a massive liquid argon time projection chamber (LArTPC) far detector located at the 4850L of Sanford Underground Research Facility in Lead, South Dakota. The long-baseline physics sensitivity calculations presented in the DUNE Physics TDR, and in a related physics paper, rely upon simulation of the neutrino beam line, simulation of neutrino interactions in the near and far detectors, fully automated event reconstruction and neutrino classification, and detailed implementation of systematic uncertainties. The purpose of this posting is to provide a simplified summary of the simulations that went into this analysis to the community, in order to facilitate phenomenological studies of long-baseline oscillation at DUNE. Simulated neutrino flux files and a GLoBES configuration describing the far detector reconstruction and selection performance are included as ancillary files to this posting. A simple analysis using these configurations in GLoBES produces sensitivity that is similar, but not identical, to the official DUNE sensitivity. DUNE welcomes those interested in performing phenomenological work as members of the collaboration, but also recognizes the benefit of making these configurations readily available to the wider community

    Volume III DUNE far detector technical coordination

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume III of this TDR describes how the activities required to design, construct, fabricate, install, and commission the DUNE far detector modules are organized and managed. This volume details the organizational structures that will carry out and/or oversee the planned far detector activities safely, successfully, on time, and on budget. It presents overviews of the facilities, supporting infrastructure, and detectors for context, and it outlines the project-related functions and methodologies used by the DUNE technical coordination organization, focusing on the areas of integration engineering, technical reviews, quality assurance and control, and safety oversight. Because of its more advanced stage of development, functional examples presented in this volume focus primarily on the single-phase (SP) detector module

    Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I: Introduction to DUNE

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay -- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE's physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay -- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. DUNE is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. Volume II of this TDR, DUNE Physics, describes the array of identified scientific opportunities and key goals. Crucially, we also report our best current understanding of the capability of DUNE to realize these goals, along with the detailed arguments and investigations on which this understanding is based. This TDR volume documents the scientific basis underlying the conception and design of the LBNF/DUNE experimental configurations. As a result, the description of DUNE's experimental capabilities constitutes the bulk of the document. Key linkages between requirements for successful execution of the physics program and primary specifications of the experimental configurations are drawn and summarized. This document also serves a wider purpose as a statement on the scientific potential of DUNE as a central component within a global program of frontier theoretical and experimental particle physics research. Thus, the presentation also aims to serve as a resource for the particle physics community at large

    Neutrino interaction classification with a convolutional neural network in the DUNE far detector

    Get PDF
    The Deep Underground Neutrino Experiment is a next-generation neutrino oscillation experiment that aims to measure CP-violation in the neutrino sector as part of a wider physics program. A deep learning approach based on a convolutional neural network has been developed to provide highly efficient and pure selections of electron neutrino and muon neutrino charged-current interactions. The electron neutrino (antineutrino) selection efficiency peaks at 90% (94%) and exceeds 85% (90%) for reconstructed neutrino energies between 2–5 GeV. The muon neutrino (antineutrino) event selection is found to have a maximum efficiency of 96% (97%) and exceeds 90% (95%) efficiency for reconstructed neutrino energies above 2 GeV. When considering all electron neutrino and antineutrino interactions as signal, a selection purity of 90% is achieved. These event selections are critical to maximize the sensitivity of the experiment to CP-violating effects

    Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network

    Get PDF
    Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between data and simulation
    • 

    corecore