328 research outputs found
Spin diffusion in the Mn2+ ion system of II-VI diluted magnetic semiconductor heterostructures
The magnetization dynamics in diluted magnetic semiconductor heterostructures
based on (Zn,Mn)Se and (Cd,Mn)Te has been studied experimentally by optical
methods and simulated numerically. In the samples with nonhomogeneous magnetic
ion distribution this dynamics is contributed by spin-lattice relaxation and
spin diffusion in the Mn spin system. The spin diffusion coefficient of
7x10^(-8) cm^2/s has been evaluated for Zn(0.99)Mn(0.01)Se from comparison of
experimental and numerical results. Calculations of the giant Zeeman splitting
of the exciton states and the magnetization dynamics in the ordered alloys and
parabolic quantum wells fabricated by the digital growth technique show perfect
agreement with the experimental data. In both structure types the spin
diffusion has an essential contribution to the magnetization dynamics.Comment: 12 pages, 11 figure
Magnetic field control of photon echo in the electron-trion system: Shuffling of coherences between optically accessible and inaccessible states
We report on magnetic field induced oscillations of the photon echo signal
from negatively charged excitons in a CdTe/(Cd,Mg)Te semiconductor quantum
well. The oscillatory signal is due to Larmor precession of the electron spin
about a transverse magnetic field and depends sensitively on the polarization
configuration of the exciting and refocusing pulses. The echo amplitude can be
fully tuned from maximum down to zero depending on the time delay between the
two pulses and the magnetic field strength. The results are explained in terms
of the optical Bloch equations accounting for the spin level structure of
electron and trion.Comment: 8 pages, 2 figure
Linear polarization of the photoluminescence of quantum wells
The degree and orientation of the magnetic-field induced linear polarization
of the photoluminescence from a wide range of heterostructures containing
(Cd,Mn)Te quantum wells between (Cd,Mn,Mg)Te barriers has been studied as a
function of detection photon energy, applied magnetic field strength and
orientation in the quantum well plane. A theoretical description of this effect
in terms of an in-plane deformation acting on the valence band states is
presented and is verified by comparison with the experimental data. We
attempted to identify clues to the microscopic origin of the valence band spin
anisotropy and to the mechanisms which actually determine the linear
polarization of the PL in the quantum wells subject to the in-plane magnetic
field. The conclusions of the present paper apply in full measure to
non-magnetic QWs as well as ensembles of disk-like QDs with shape and/or strain
anisotropy.Comment: 21 pages, 10 figure
- …