15 research outputs found

    Influence of Exogenously Supplemented Caffeine on Cell Division, Germination, and Growth of Economically Important Plants

    Get PDF
    Caffeine is a plant secondary metabolite of antiherbivory, allelopathic, and antibacterial activity. In our previous study, caffeine was shown to be an effective agent toward plant pathogenic bacteria causing high economic losses in crop production worldwide. Current study indicated that growth media supplementation with soil or plant extract did not interfere with antibacterial action of caffeine against Clavibacter michiganensis, Dickeya solani, Pectobacterium atrosepticum, Pectobacterium carotovorum, Pseudomonas syringae, Ralstonia solanacearum, and Xanthomonas campestris. The impact of caffeine on plant cell division, seed germination and growth of economically important plants was evaluated to assess possible applicability of caffeine in plant protection field. Caffeine impaired plant cell division process and inhibited in vitro germination of tomato and lettuce. Regeneration of potato explants was also negatively affected by the addition of caffeine. However, caffeine spraying or watering of tomato, lettuce and cabbage grown in soil did not impair plant development. Although the tested plants accumulated caffeine, its inner quantity was reduced by peeling and/or cooking. According to the results, caffeine warrants additional attention as a useful, natural compound designated for the control of bacterial plant pathogens. Proposed treatment seems promising especially in the case of providing protection for overwinter-stored table potato tubers

    Growth of bacterial phytopathogens in animal manures

    No full text
    Animal manures are routinely applied to agricultural lands to improve crop yield, but the possibility to spread bacterial phytopathogens through field fertilization has not been considered yet. We monitored 49 cattle, horse, swine, sheep or chicken manure samples collected in 14 Polish voivodeships for the most important plant pathogenic bacteria - Ralstonia solanacearum (Rsol), Xanthomonas campestris pv. campestris (Xcc), Pectobacterium carotovorum subsp. carotovorum (Pcc), Pectobacterium atrosepticum (Pba), Erwinia amylovora (Eam), Clavibacter michiganensis subsp. sepedonicus (Cms) and Dickeya sp. (Dsp). All of the tested animal fertilizers were free of these pathogens. Subsequently, the growth dynamics of Pba, Pcc, Rsol, and Xcc in cattle, horse, swine, sheep and chicken manures sterilized either by autoclaving or filtration was evaluated. The investigated phytopathogens did not exhibit any growth in the poultry manure. However, the manure filtrates originating from other animals were suitable for microbial growth, which resulted in the optical density change of 0.03-0.22 reached within 26 h (48 h Rsol, 120 h Xcc), depending on bacterial species and the manure source. Pcc and Pba multiplied most efficiently in the cattle manure filtrate. These bacteria grew faster than Rsol and Xcc in all the tested manure samples, both the filtrates and the autoclaved semi-solid ones. Though the growth dynamics of investigated strains in different animal fertilizers was unequal, all of the tested bacterial plant pathogens were proven to use cattle, horse, swine and sheep manures as the sources of nutrients. These findings may contribute to further research on the alternative routes of spread of bacterial phytopathogens, especially because of the fact that the control of pectionolytic bacteria is only based on preventive methods

    Phyloproteomic study by MALDI-TOF MS in view of intraspecies variation in a significant homogenous phytopathogen Dickeya solani

    No full text
    Abstract Dickeya solani is an economically significant pectinolytic phytopathogen belonging to the Pectobacteriaceae family, which causes soft rot and blackleg diseases. Despite its notable impact on global potato production, there are no effective methods to control this pest. Here, we undertook a phyloproteomic study on 20 D. solani strains, of various origin and year of isolation, with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) supported by an in-depth characterization of the strains in terms of the virulence-associated phenotype. In spite of high homogeneity in this species, we herein revealed for the first time intraspecies variation in the MALDI-TOF MS protein profiles among the studied D. solani isolates. Finally, representative mass spectra for the four delineated clades are presented. A majority of the analysed D. solani strains showed high virulence potential, while two strains stood out in their growth dynamics, virulence factors production and ability to macerate plant tissue. Nonetheless, the metabolic profiles of D. solani strains turned out to be uniform, except for gelatinase activity. Given that all D. solani isolates distinctly grouped from the other Dickeya species in the MALDI-TOF MS analysis, there is strong evidence supporting the potential routine use of this method for fast and reliable to-species identification of D. solani isolates of environmental origin

    Heterogenicity within the LPS Structure in Relation to the Chosen Genomic and Physiological Features of the Plant Pathogen <i>Pectobacterium parmentieri</i>

    No full text
    Pectobacterium parmentieri is a pectinolytic plant pathogenic bacterium causing high economic losses of cultivated plants. The highly devastating potential of this phytopathogen results from the efficient production of plant cell wall-degrading enzymes, i.e., pectinases, cellulases and proteases, in addition to the impact of accessory virulence factors such as motility, siderophores, biofilm and lipopolysaccharide (LPS). LPS belongs to pathogen-associated molecular patterns (PAMPs) and plays an important role in plant colonization and interaction with the defense systems of the host. Therefore, we decided to investigate the heterogeneity of O-polysaccharides (OPS) of LPS of different strains of P. parmentieri, in search of an association between the selected genomic and phenotypic features of the strains that share an identical structure of the OPS molecule. In the current study, OPS were isolated from the LPS of two P. parmentieri strains obtained either in Finland in the 1980s (SCC3193) or in Poland in 2013 (IFB5432). The purified polysaccharides were analyzed by utilizing 1D and 2D NMR spectroscopy (1H, DQF-COSY, TOCSY, ROESY, HSQC, HSQC-TOCSY and HMBC) in addition to chemical methods. Sugar and methylation analyses of native polysaccharides, absolute configuration assignment of constituent monosaccharides and NMR spectroscopy data revealed that these two P. parmentieri strains isolated in different countries possess the same structure of OPS with a very rare residue of 5,7-diamino-3,5,7,9-tetradeoxy-l-glycero-l-manno-non-2-ulosonic acid (pseudaminic acid) substituted in the position C-8: →3)-β-d-Galf-(1→3)-α-d-Galp-(1→8)-β-Pse4Ac5Ac7Ac-(2→6)-α-d-Glcp-(1→6)-β-d-Glcp-(1→. The previous study indicated that three other P. parmentieri strains, namely IFB5427, IFB5408 and IFB5443, exhibit a different OPS molecule than SCC3193 and IFB5432. The conducted biodiversity-oriented assays revealed that the P. parmentieri IFB5427 and IFB5408 strains possessing the same OPS structure yielded the highest genome-wide similarity, according to average nucleotide identity analyses, in addition to the greatest ability to macerate chicory tissue among the studied P. parmentieri strains. The current research demonstrated a novel OPS structure, characteristic of at least two P. parmentieri strains (SCC3193 and IFB5432), and discussed the observed heterogenicity in the OPS of P. parmentieri in a broad genomic and phenotype-related context

    Antibacterial activity of caffeine against plant pathogenic bacteria

    No full text
    The objective of the present study was to evaluate the antibacterial properties of a plant secondary metabolite - caffeine. Caffeine is present in over 100 plant species. Antibacterial activity of caffeine was examined against the following plant-pathogenic bacteria: Ralstonia solanacearum (Rsol), Clavibacter michiganesis subsp. sepedonicus (Cms), Dickeya solani (Dsol), Pectobacterium atrosepticum (Pba), Pectobacterium carotovorum subsp. carotovorum (Pcc), Pseudomonas syringae pv. tomato (Pst), and Xanthomonas campestris subsp. campestris (Xcc). MIC and MBC values ranged from 5 to 20 mM and from 43 to 100 mM, respectively. Caffeine increased the bacterial generation time of all tested species and caused changes in cell morphology. The influence of caffeine on the synthesis of DNA, RNA and proteins was investigated in cultures of plant pathogenic bacteria with labelled precursors: [3H]thymidine, [3H]uridine or 14C leucine, respectively. RNA biosynthesis was more affected than DNA or protein biosynthesis in bacterial cells treated with caffeine. Treatment of Pba with caffeine for 336 h did not induce resistance to this compound. Caffeine application reduced disease symptoms caused by Dsol on chicory leaves, potato slices, and whole potato tubers. The data presented indicate caffeine as a potential tool for the control of diseases caused by plant-pathogenic bacteria, especially under storage conditions

    Application of Silver Nanostructures Synthesized by Cold Atmospheric Pressure Plasma for Inactivation of Bacterial Phytopathogens from the Genera Dickeya and Pectobacterium

    No full text
    Pectinolytic bacteria are responsible for significant economic losses by causing diseases on numerous plants. New methods are required to control and limit their spread. One possibility is the application of silver nanoparticles (AgNPs) that exhibit well-established antibacterial properties. Here, we synthesized AgNPs, stabilized by pectins (PEC) or sodium dodecyl sulphate (SDS), using a direct current atmospheric pressure glow discharge (dc-APGD) generated in an open-to-air and continuous-flow reaction-discharge system. Characterization of the PEC-AgNPs and SDS-AgNPs with UV/Vis absorption spectroscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, and selected area electron diffraction revealed the production of spherical, well dispersed, and face cubic centered crystalline AgNPs, with average sizes of 9.33 ± 3.37 nm and 28.3 ± 11.7 nm, respectively. Attenuated total reflection-Fourier transformation infrared spectroscopy supported the functionalization of the nanostructures by PEC and SDS. Antibacterial activity of the AgNPs was tested against Dickeya spp. and Pectobacterium spp. strains. Both PEC-AgNPs and SDS-AgNPs displayed bactericidal activity against all of the tested isolates, with minimum inhibitory concentrations of 5.5 mg∙L−1 and 0.75–3 mg∙L−1, respectively. The collected results suggest that the dc-APGD reaction-discharge system can be applied for the production of defined AgNPs with strong antibacterial properties, which may be further applied in plant disease management

    Antibacterial activity of caffeine against plant pathogenic bacteria

    No full text
    The objective of the present study was to evaluate the antibacterial properties of a plant secondary metabolite - caffeine. Caffeine is present in over 100 plant species. Antibacterial activity of caffeine was examined against the following plant-pathogenic bacteria: Ralstonia solanacearum (Rsol), Clavibacter michiganesis subsp. sepedonicus (Cms), Dickeya solani (Dsol), Pectobacterium atrosepticum (Pba), Pectobacterium carotovorum subsp. carotovorum (Pcc), Pseudomonas syringae pv. tomato (Pst), and Xanthomonas campestris subsp. campestris (Xcc). MIC and MBC values ranged from 5 to 20 mM and from 43 to 100 mM, respectively. Caffeine increased the bacterial generation time of all tested species and caused changes in cell morphology. The influence of caffeine on the synthesis of DNA, RNA and proteins was investigated in cultures of plant pathogenic bacteria with labelled precursors: [3H]thymidine, [3H]uridine or 14C leucine, respectively. RNA biosynthesis was more affected than DNA or protein biosynthesis in bacterial cells treated with caffeine. Treatment of Pba with caffeine for 336 h did not induce resistance to this compound. Caffeine application reduced disease symptoms caused by Dsol on chicory leaves, potato slices, and whole potato tubers. The data presented indicate caffeine as a potential tool for the control of diseases caused by plant-pathogenic bacteria, especially under storage conditions

    The uniform structure of O-polysaccharides isolated from Dickeya solani strains of different origin

    No full text
    International audienceO-polysaccharides were isolated from lipopolysaccharides obtained from four different strains of plant pathogenic bacteria belonging to the species Dickeya solani: two of them were isolated in Poland (IFB0099 and IFB0158), the third in Germany (IFB0223) and the last one, D. solani Type Strain IPO2222, originated from the Netherlands. In addition, the O-polysaccharide of a closely related species D. dadantii strain 3937 was isolated. The purified polysaccharides of the five strains were analyzed using NMR spectroscopy and chemical methods. Sugar and methylation analyses, including absolute configuration assignment, together with NMR data revealed that all O-polysaccharides tested are homopolymers of 6-deoxy-d-altrose (d-6dAlt) the following structure: →2)-β-d-6dAltp-(1→
    corecore