36 research outputs found

    Quantum Theory of the Classical: Einselection, Envariance, Quantum Darwinism and Extantons

    Full text link
    Core quantum postulates including the superposition principle and the unitarity of evolutions are natural and strikingly simple. I show that -- when supplemented with a limited version of predictability (captured in the textbook accounts by the repeatability postulate) -- these core postulates can account for all the symptoms of classicality. In particular, both objective classical reality and elusive information about reality arise, via quantum Darwinism, from the quantum substrate.Comment: To appear in the ENTROPY volume "Quantum Darinism and Friends" edited by Sebastian Deffner et al. https://www.mdpi.com/journal/entropy/special_issues/quantum_darwinism. arXiv admin note: text overlap with arXiv:0707.283

    Sub-Planck spots of Schroedinger cats and quantum decoherence

    Get PDF
    Heisenberg's principle1^1 states that the product of uncertainties of position and momentum should be no less than Planck's constant \hbar. This is usually taken to imply that phase space structures associated with sub-Planck (\ll \hbar) scales do not exist, or, at the very least, that they do not matter. I show that this deeply ingrained prejudice is false: Non-local "Schr\"odinger cat" states of quantum systems confined to phase space volume characterized by `the classical action' AA \gg \hbar develop spotty structure on scales corresponding to sub-Planck a=2/Aa = \hbar^2 / A \ll \hbar. Such structures arise especially quickly in quantum versions of classically chaotic systems (such as gases, modelled by chaotic scattering of molecules), that are driven into nonlocal Schr\"odinger cat -- like superpositions by the quantum manifestations of the exponential sensitivity to perturbations2^2. Most importantly, these sub-Planck scales are physically significant: aa determines sensitivity of a quantum system (or of a quantum environment) to perturbations. Therefore sub-Planck aa controls the effectiveness of decoherence and einselection caused by the environment38^{3-8}. It may also be relevant in setting limits on sensitivity of Schr\"odinger cats used as detectors.Comment: Published in Nature 412, 712-717 (2001
    corecore