24 research outputs found

    Preliminary results of in vitro culture of pea and lupin embryos for the reduction of generation cycles in single seed descent technique

    Get PDF
    The aim of the studies was to establish in vitro conditions for the culture of pea and lupin embryos as the first step in the development of an in vitro assisted single seed descent technique for the attainment of homozygous populations. Materials for the study included of pea, and narrow-leafed and yellow lupin cultivars. Embryos dissected from mature but still-green seeds were cultured in vitro on two modified MS media and under three temperature regimes. Shoot and root lengths of regenerated plants were measured after 7, 14 and 21 days of culture. For pea plants full-strength MS medium with 4 g l−1 agar and temperature 22/ 20°C (day/night) appeared to be the most conducive to shoot and root development, whereas for lupin plants lower temperatures were more propitious: 12°C in the dark for narrow-leafed lupin and 16/ 12°C (day/night) for yellow lupin. Almost all the cultured embryos developed into plants, but not all the regenerated plants survived acclimation to ex vitro conditions

    Preliminary results of in vitro culture of pea and lupin embryos for the reduction of generation cycles in single seed descent technique

    Get PDF
    The aim of the studies was to establish in vitro conditions for the culture of pea and lupin embryos as the first step in the development of an in vitro assisted single seed descent technique for the attainment of homozygous populations. Materials for the study included of pea, and narrow-leafed and yellow lupin cultivars. Embryos dissected from mature but still-green seeds were cultured in vitro on two modified MS media and under three temperature regimes. Shoot and root lengths of regenerated plants were measured after 7, 14 and 21 days of culture. For pea plants full-strength MS medium with 4 g l−1 agar and temperature 22/ 20°C (day/night) appeared to be the most conducive to shoot and root development, whereas for lupin plants lower temperatures were more propitious: 12°C in the dark for narrow-leafed lupin and 16/ 12°C (day/night) for yellow lupin. Almost all the cultured embryos developed into plants, but not all the regenerated plants survived acclimation to ex vitro conditions

    Chromatographic Fingerprinting of the Old World Lupins Seed Alkaloids: A Supplemental Tool in Species Discrimination

    No full text
    The total contents and qualitative compositions of alkaloids in seeds of 10 Old World lupin species (73 accessions) were surveyed using gas chromatography. The obtained results, combined with those for three lupin crops, Lupinus angustifolius, Lupinus albus, and Lupinus luteus, provide the most complete and up-to-date overview of alkaloid profiles of 13 lupin species originating from the Mediterranean Basin. The qualitative alkaloid compositions served as useful supplementary tools of species discrimination. On the basis of the most abundant major alkaloids, lupanine, lupinine, and multiflorine, the Old World lupin species were divided into four groups. Those containing lupanine (L. angustifolius, L. albus, and Lupinus mariae-josephi), containing lupinine (Lupinus luteus, Lupinus hispanicus, and Lupinus × hispanicoluteus), containing lupinine and multiflorine (Lupinus atlanticus, Lupinus palaestinus, Lupinus anatolicus, Lupinus digitatus, Lupinus pilosus, and Lupinus cosentinii), and containing multiflorine (Lupinus micranthus). Within a given group, certain species can be, in most cases, further distinguished by the presence of other major alkaloids. The discrimination of species based on the total alkaloid content was found to be less reliable because of the significant intra-species variations, as well as the influences of environmental factors on the seed alkaloid content

    Application of the High Resolution Melting analysis for genetic mapping of Sequence Tagged Site markers in narrow-leafed lupin (Lupinus angustifolius L.)

    No full text
    Sequence tagged site (STS) markers are valuable tools for genetic and physical mapping that can be successfully used in comparative analyses among related species. Current challenges for molecular markers genotyping in plants include the lack of fast, sensitive and inexpensive methods suitable for sequence variant detection. In contrast, high resolution melting (HRM) is a simple and high-throughput assay, which has been widely applied in sequence polymorphism identification as well as in the studies of genetic variability and genotyping. The present study is the first attempt to use the HRM analysis to genotype STS markers in narrow-leafed lupin (Lupinus angustifolius L.). The sensitivity and utility of this method was confirmed by the sequence polymorphism detection based on melting curve profiles in the parental genotypes and progeny of the narrow-leafed lupin mapping population. Application of different approaches, including amplicon size and a simulated heterozygote analysis, has allowed for successful genetic mapping of 16 new STS markers in the narrow-leafed lupin genome

    Application of the High Resolution Melting analysis for genetic mapping of Sequence Tagged Site markers in narrow-leafed lupin (Lupinus angustifolius L.)

    No full text
    Sequence tagged site (STS) markers are valuable tools for genetic and physical mapping that can be successfully used in comparative analyses among related species. Current challenges for molecular markers genotyping in plants include the lack of fast, sensitive and inexpensive methods suitable for sequence variant detection. In contrast, high resolution melting (HRM) is a simple and high-throughput assay, which has been widely applied in sequence polymorphism identification as well as in the studies of genetic variability and genotyping. The present study is the first attempt to use the HRM analysis to genotype STS markers in narrow-leafed lupin (Lupinus angustifolius L.). The sensitivity and utility of this method was confirmed by the sequence polymorphism detection based on melting curve profiles in the parental genotypes and progeny of the narrow-leafed lupin mapping population. Application of different approaches, including amplicon size and a simulated heterozygote analysis, has allowed for successful genetic mapping of 16 new STS markers in the narrow-leafed lupin genome

    The importance of grain legumes for a domestic protein security

    No full text
    Soya meal is the main high protein source in feeding pigs and poultry. Taking into account the annual value of domestic import, limited soya seed producers (USA, Argentina, Brasil) and China as the main soya seed importer (66 percent of the world import), a use of alternative protein sources (grain legumes, rape meal, DDGS) seems to be justified. An additional reason for a so called protein security in Poland are the feed regulations prohibiting a usage of GM products in feeding. Polish Government launched research projects for two periods (2011–2015 and 2016–2020) to solve main problems related to increased production and usage of domestic protein sources in animals feeding. Main strategies and research results of four areas – grain legume genetics and breeding, cropping technologies, pigs and poultry feeding and economic aspects of production, market infrastructure and turnover of domestic protein crops – are presented in the paper. Satisfactory is an increase of acreage under grain legumes in Poland – from 100 thousand ha in 2011 to 300 thousand ha in 2019. At present, given the availability of domestic grain legumes and rape meal it is possible to decrease soya meal imports up to 60–50 percent. Over the past decade, a strong increase of poultry meat production (about 120 percent) with a rather small increase of soya meal imports (about 18 percent) is also as optimistic tendency. A lasting solution may be achieved by setting a national/ European indicator target that would put the mandatory share of domestic protein sources in feed mixes at 10–20%, and creation of Polish feed companies, competitive to foreign, both large and mobile feed mixing plants, using the farmer’s raw materials
    corecore