32 research outputs found

    Posterior cruciate ligament balancing in total knee arthroplasty: a numerical study with a dynamic force controlled knee model

    Get PDF
    Background: Adequate soft tissue balancing is a key factor for a successful result after total knee arthroplasty (TKA). Posterior cruciate ligament (PCL) is the primary restraint to posterior translation of the tibia after cruciate retaining TKA and is also responsible for the amount of joint compression. However, it is complex to quantify the amount of ligament release with its effects on load bearing and kinematics in TKA and limited both in vivo and in vitro. The goal of this study was to create a dynamic and deformable finite element model of a full leg and analyze a stepwise release of the PCL regarding knee kinematics, pressure distribution and ligament stresses. Methods: A dynamic finite element model was developed in Ansys V14.0 based on boundary conditions of an existing knee rig. A cruciate retraining knee prosthesis was virtually implanted. Ligament and muscle structures were simulated with modified spring elements. Linear elastic materials were defined for femoral component, inlay and patella cartilage. A restart algorithm was developed and implemented into the finite element simulation to hold the ground reaction force constant by adapting quadriceps force. After simulating the unreleased PCL model, two models were developed and calculated with the same boundary conditions with a 50% and 75% release of the PCL stiffness. Results: From the beginning of the simulation to approximately 35 degrees of flexion, tibia moves posterior related to the femur and with higher flexion anteriorly. Anterior translation of the tibia ranged from 5.8 mm for unreleased PCL to 3.7 mm for 75% PCL release (4.9 mm 50% release). A decrease of maximum von Mises equivalent stress on the inlay was given with PCL release, especially in higher flexion angles from 11.1 MPa for unreleased PCL to 8.9 MPa for 50% release of the PCL and 7.8 MPa for 75% release. Conclusions: Our study showed that dynamic FEM is an effective method for simulation of PCL balancing in knee arthroplasty. A tight PCL led in silico to more anterior tibia translation, a higher collateral ligament and inlay stress, while retropatellar pressure remained unchanged. Surgeons may take these results in vivo into account

    Patellofemoral contact patterns before and after total knee arthroplasty: an in vitro measurement

    Get PDF
    Background: Patellofemoral complications are one of the main problems after Total Knee Arthroplasty (TKA). Retropatellar pressure distribution after TKA can contribute to these symptoms. Therefore we evaluated retropatellar pressure distribution subdivided on the ridge, medial and lateral surface on non-resurfaced patella before and after TKA. Additionally, we analyzed axial femorotibial rotation and quadriceps load before and after TKA. Methods: Seven fresh frozen cadaver knees were tested in a force controlled knee rig before and after TKA (Aesculap, Tuttlingen, Germany, Columbus CR) while isokinetic flexing the knee from 20 degrees to 120 degrees under weight bearing. Ridge, medial and lateral retropatellar surface were defined and pressure distribution was dynamically measured while quadriceps muscles and hamstring forces were applied. Aside axial femorotibial rotation and quadriceps load was recorded. Results: There was a significant change of patella pressure distribution before and after TKA (p = 0.004). In physiological knees pressure distribution on medial and lateral retropatellar surface was similar. After TKA the ridge of the patella was especially in higher flexion grades strongly loaded (6.09 +/-1.31 MPa) compared to the natural knee (2.92 +/-1.15 MPa, p < 0.0001). Axial femorotibial rotation showed typical internal rotation with increasing flexion both before and after TKA, but postoperatively it was significantly lower. The average amount of axial rotation was 3.5 degrees before and after TKA 1.3 degrees (p = 0.001). Mean quadriceps loading after implantation of knee prosthesis did not change significantly (575 N +/- 60 N in natural knee and after TKA 607 N +/- 96 N; p = 0.28). Conclusions: The increased retropatellar pressure especially on the ridge may be one important reason for anterior knee pain after TKA. The trochlea of the femoral component might highly influence the pressure distribution of the non-resurfaced retropatellar surface. Additionally, lower axial femorotibial rotation after TKA might lead to patella maltracking. Changing the design of the prosthesis or a special way of patella shaping might increase the conformity of the patella to trochlea to maintain natural contact patterns

    Calculation of the elastic properties of prosthetic knee components with an iterative finite element-based modal analysis: quantitative comparison of different measuring techniques.

    Get PDF
    With the aging but still active population, research on total joint replacements relies increasingly on numerical methods, such as finite element analysis, to improve wear resistance of components. However, the validity of finite element models largely depends on the accuracy of their material behavior and geometrical representation. In particular, material properties are often based on manufacturer data or literature reports, but can alternatively be estimated by matching experimental measurements and structural predictions through modal analyses and identification of eigenfrequencies. The aim of the present study was to compare the accuracy of common setups used for estimating the eigenfrequencies of typical components often used in prosthetized joints. Eigenfrequencies of cobalt-chrome and ultra-high-molecular weight polyethylene components were therefore measured with four different setups, and used in modal analyses of corresponding finite element models for an iterative adjustment of their material properties. Results show that for the low-damped cobalt chromium endoprosthesis components, all common measuring setups provided accurate measurements. In the case of high-damped structures, measurements were only possible with setups including a continuously excitation system such as electrodynamic shakers. This study demonstrates that the iterative back-calculation of eigenfrequencies can be a reliable method to estimate the elastic properties for finite element models

    Does Posterior Tibial Slope Influence Knee Kinematics in Medial Stabilized TKA?

    Get PDF
    Background: During total knee arthroplasty (TKA), one of the key alignment factors to pay attention to is the posterior tibial slope (PTS). The PTS clearly influences the kinematics of the knee joint but must be adapted to the coupling degree of the specific TKA design. So far, there is hardly any literature including clear recommendations for how surgeons should choose the PTS in a medial stabilized (MS) TKA. The aim of the present study is to investigate the effects of different degrees of PTS on femorotibial kinematics in MS TKA. Materials and Methods: An MS TKA was performed in seven fresh-frozen human specimens successively with 0 degrees, 3 degrees, and 6 degrees of PTS. After each modification, weight-bearing deep knee flexion (30-130 degrees) was performed, and femorotibial kinematics were analyzed. Results: A lateral femoral rollback was observed for all three PTS modifications. With an increasing PTS, the tibia was shifted more anteriorly on the lateral side (0 degrees PTS anterior tibial translation -9.09 (+/- 9.19) mm, 3 degrees PTS anterior tibial translation -11.03 (+/- 6.72) mm, 6 degrees PTS anterior tibial translation 11.86 (+/- 9.35) mm). No difference in the tibial rotation was found for the different PTS variants. All PTS variants resulted in internal rotation of the tibia during flexion. With a 3 degrees PTS, the design-specific medial rotation point was achieved more accurately. Conclusions: According to our findings, we recommend a PTS of 3 degrees when implanting the MS prosthesis used in this study

    Rapid Prototyping for In Vitro Knee Rig Investigations of Prosthetized Knee Biomechanics: Comparison with Cobalt-Chromium Alloy Implant Material

    Get PDF
    Retropatellar complications after total knee arthroplasty (TKA) such as anterior knee pain and subluxations might be related to altered patellofemoral biomechanics, in particular to trochlear design and femorotibial joint positioning. A method was developed to test femorotibial and patellofemoral joint modifications separately with 3D-rapid prototyped components for in vitro tests, but material differences may further influence results. This pilot study aims at validating the use of prostheses made of photopolymerized rapid prototype material (RPM) by measuring the sliding friction with a ring-on-disc setup as well as knee kinematics and retropatellar pressure on a knee rig. Cobalt-chromium alloy (standard prosthesis material, SPM) prostheses served as validation standard. Friction coefficients between these materials and polytetrafluoroethylene (PTFE) were additionally tested as this latter material is commonly used to protect pressure sensors in experiments. No statistical differences were found between friction coefficients of both materials to PTFE. UHMWPE shows higher friction coefficient at low axial loads for RPM, a difference that disappears at higher load. No measurable statistical differences were found in knee kinematics and retropatellar pressure distribution. This suggests that using polymer prototypes may be a valid alternative to original components for in vitro TKA studies and future investigations on knee biomechanics

    How relevant is lumbar bone mineral density for the stability of symphyseal implants? A biomechanical cadaver study

    Get PDF
    PURPOSE Osteoporotic bone tissue appears to be an important risk factor for implant loosening, compromising the stability of surgical implants. However, it is unclear whether lumbar measured bone mineral density (BMD) is of any predictive value for stability of surgical implants at the pubic symphysis. This study examines the fixation strength of cortical screws in human cadaver specimens with different BMDs. METHODS The lumbar BMD of ten human specimens was measured using quantitative computed tomography (qCT). A cut-off BMD was set at 120~mg Ca-Ha/mL, dividing the specimens into two groups. One cortical screw was drilled into each superior pubic ramus. The screw was withdrawn in an axial direction with a steady speed and considered failed when a force decrease was detected. Required force (N) and pull-out distance (mm) were constantly tracked. RESULTS The median peak force of group 1 was 231.88~N and 228.08~N in group 2. While BMD values differed significantly (p < 0.01), a comparison of peak forces between both groups showed no significant difference (p = 0.481). CONCLUSION Higher lumbar BMD did not result in significantly higher pull-out forces at the symphysis. The high proportion of cortical bone near the symphyseal joint allows an increased contact of pubic screws and could explain sufficient fixation. This condition is not reflected by a compromised lumbar BMD in a qCT scan. Therefore, site-specific BMD measurement could improve individual fracture management

    The T-pod is as stable as supraacetabular fixation using 1 or 2 Schanz screws in partially unstable pelvic fractures: a biomechanical study

    Get PDF
    Introduction: Unstable fractures of the pelvis remain the predominant cause of severe hemorrhage, shock and early death in severely injured patients. The use of pelvic binders has become increasingly popular, particularly in the preclinical setting. There is currently insufficient evidence available about the stability of the pelvic binder versus supraacetabular fixation using 1 or 2 Schanz screws. We aimed to analyze the stability of the pelvic binder and supraacetabular fixateurs using either 1 or 2 Schanz screws in a cadaver model of an induced pelvic B-type fracture. Materials and methods: The study was undertaken in 7 human fresh-frozen cadaveric pelvises with induced AO-type B fractures. Three stabilization techniques were compared: T-POD (pelvic bandage), supraacetabular external fixator with 1 pin on each side and external fixator with 2 pins on each side. Stability and stiffness were analyzed in a biomechanical testing machine using a 5-step protocol with static and dynamic loading, dislocation data were retrieved by ultrasound sensors at the fracture sites. Results: No significant differences in fracture fragment displacement were detected when using either the T-POD, a 1-pin external fixator or a 2-pin external fixator (P > 0.05). The average difference in displacement between the three methods was < 1 mm. Conclusions: Pelvic binders are suitable for reduction of pelvic B-type fractures. They provide stability comparable to that of supraacetabular fixators, independently of whether 1 or 2 Schanz screws per side are used. Pelvic binders provide sufficient biomechanical stability for transferring patients without the need to first replace them with surgically applied external fixators. However, soft tissue irritation has to be taken into consideration and prolonged wear should be avoided. Level of evidence: Level III

    Increase in the Tibial Slope in Unicondylar Knee Replacement: Analysis of the Effect on the Kinematics and Ligaments in a Weight-Bearing Finite Element Model

    Get PDF
    Introduction. Unicompartmental arthroplasty (UKA) of the knee in patients with isolated medial osteoarthritis yields adequate results;however, the survival rate is inferior to that of total knee arthroplasty (TKA). A key factor in the longevity of the implant is the positioning;however, the optimal tibial slope in UKA has not been determined. The aim of this study was to establish a finite element (FE) model and investigate the effect of the tibial slope on the strain of the ligaments, kinematics, inlay movement, and load in the nonreplaced patellofemoral compartment in a medial mobile bearing UKA. Materials and Methods. An FE model of a leg was established with a virtual UKA implantation with three different tibial slopes (0 degrees, 5 degrees, and 10 degrees). Subsequently, the knee was flexed from 14-73 degrees. In addition, the ground reaction force and the muscles were simulated. Results. With a higher tibial slope, there was more external rotation of the tibia. An increased tibial slope provided a lateral shift of the patella in the trochlear groove and a more anterior position of the inlay. The ligament strains were also changed, specifically, the anterior portion of the medial collateral ligament and the posterior cruciate ligament (PCL). Discussion. This study established the first model of a quasidynamic mobile bearing UKA in a leg under weight-bearing conditions. With an increasing tibial slope, there was a higher external rotation of the tibia that created different femorotibial and retropatellar kinematics and different strains in the ligaments. This knowledge adds important information for the optimal tibial slope that has to be determined individually depending on the patient's preoperative kinematics, desired postoperative kinematics, ligament status, and location of the retropatellar chondral damage

    Interlaboratory comparison of femur surface reconstruction from CT data compared to reference optical 3D scan

    Get PDF
    Background: The present study contrasts the accuracy of different reconstructed models with distinctive segmentation methods performed by various experts. Seven research groups reconstructed nine 3D models of one human femur based on an acquired CT image using their own computational methods. As a reference model for accuracy assessment, a 3D surface scan of the human femur was created using an optical measuring system. Prior to comparison, the femur was divided into four areas;"neck and greater trochanter", "proximal metaphysis", "diaphysis", and "distal metaphysis". The deviation analysis was carried out in GEOMAGIC studio v. 2013 software. Results: The results revealed that the highest deviation errors occurred in "neck and greater trochanter" area and "proximal metaphysis" area with RMSE of 0.84 and 0.83 mm respectively. Conclusion: In conclusion, this study shows that the average deviation of reconstructed models prepared by experts with various methods, skills and software from the surface 3D scan is lower than 0.79 mm, which is not a significant discrepancy

    Modified less invasive anterior subcutaneous fixator for unstable Tile-C-pelvic ring fractures

    Get PDF
    Background Operative procedures for unstable pelvic ring fractures remain controversially discussed. Minimally invasive treatment options for pelvic ring fractures have several benefits for the patient. But they can also provide disadvantages. Anterior subcutaneous pelvic fixation (INFIX) has shown promising biomechanical results in pelvic ring fractures, but there is a high complication rate of nerve injuries. An additional screw to the INFIX seems to be more stable. The aim of this study is to compare biomechanical stability of a new modified unilateral INFIX fixing the unilateral injured pelvic ring with the standard INFIX. Methods 24 composite synthetic full pelvises were used in this study. 4 groups each with a number of six pelvic specimens were randomly assigned. A C1.3-type pelvic fracture was made with an osteotomy of the sacrum and an osteotomy of the anterior pelvic ring. Fracture fixation was performed within the four groups: (1) unilateral INFIX, (2) “extended” unilateral INFIX + additional pubic ramus pedicle screw, (3) bilateral INFIX, (4) “extended” bilateral INFIX + additional pubic ramus pedicle screw. All specimens were cyclic loaded with 200 N until maximum of 300 N. Distance/dislocation of the fracture fragments were detected with 3D-ultrasound measuring system. Stiffness was calculated. Results Extended unilateral INFIX showed the lowest mean dislocation. Lowest rotational stability was displayed by the standard bilateral INFIX. A significant difference (P = 0.04) was shown between the extended unilateral INFIX and the “standard” bilateral INFIX in terms of rotational stability. Extended unilateral INFIX showed significantly improved stability of anterior fracture dislocation (P = 0.01) and unilateral INFIX showed the highest rotational stiffness. Anterior fixation stiffness of the unilateral INFIX was significantly improved using an additional symphysis/pubic ramus screw (P = 0.002). Conclusion Extended unilateral INFIX (+ additional pubic ramus pedicle screw) is a feasible minimally invasive treatment for anterior pelvic ring fractures. Higher stability and lower probability of bilateral nerve damage is provided by the extended unilateral INFIX compared to the standard bilateral INFIX
    corecore