279 research outputs found
UDP-Galactose 4′-Epimerase Activities toward UDP-Gal and UDP-GalNAc Play Different Roles in the Development of Drosophila melanogaster
In both humans and Drosophila melanogaster, UDP-galactose 4′-epimerase (GALE) catalyzes two distinct reactions, interconverting UDP-galactose (UDP-gal) and UDP-glucose (UDP-glc) in the final step of the Leloir pathway of galactose metabolism, and also interconverting UDP-N-acetylgalactosamine (UDP-galNAc) and UDP-N-acetylglucosamine (UDP-glcNAc). All four of these UDP-sugars serve as vital substrates for glycosylation in metazoans. Partial loss of GALE in humans results in the spectrum disorder epimerase deficiency galactosemia; partial loss of GALE in Drosophila melanogaster also results in galactose-sensitivity, and complete loss in Drosophila is embryonic lethal. However, whether these outcomes in both humans and flies result from loss of one GALE activity, the other, or both has remained unknown. To address this question, we uncoupled the two activities in a Drosophila model, effectively replacing the endogenous dGALE with prokaryotic transgenes, one of which (Escherichia coli GALE) efficiently interconverts only UDP-gal/UDP-glc, and the other of which (Plesiomonas shigelloides wbgU) efficiently interconverts only UDP-galNAc/UDP-glcNAc. Our results demonstrate that both UDP-gal and UDP-galNAc activities of dGALE are required for Drosophila survival, although distinct roles for each activity can be seen in specific windows of developmental time or in response to a galactose challenge. By extension, these data also suggest that both activities might play distinct and essential roles in humans
Use of BODIPY (493/503) to Visualize Intramuscular Lipid Droplets in Skeletal Muscle
Triglyceride storage is altered across various chronic health conditions necessitating various techniques to visualize and quantify lipid droplets (LDs). Here, we describe the utilization of the BODIPY (493/503) dye in skeletal muscle as a means to analyze LDs. We found that the dye was a convenient and simple approach to visualize LDs in both sectioned skeletal muscle and cultured adult single fibers. Furthermore, the dye was effective in both fixed and nonfixed cells, and the staining seemed unaffected by permeabilization. We believe that the use of the BODIPY (493/503) dye is an acceptable alternative and, under certain conditions, a simpler method for visualizing LDs stored within skeletal muscle
Algorithm engineering for optimal alignment of protein structure distance matrices
Protein structural alignment is an important problem in computational
biology. In this paper, we present first successes on provably optimal pairwise
alignment of protein inter-residue distance matrices, using the popular Dali
scoring function. We introduce the structural alignment problem formally, which
enables us to express a variety of scoring functions used in previous work as
special cases in a unified framework. Further, we propose the first
mathematical model for computing optimal structural alignments based on dense
inter-residue distance matrices. We therefore reformulate the problem as a
special graph problem and give a tight integer linear programming model. We
then present algorithm engineering techniques to handle the huge integer linear
programs of real-life distance matrix alignment problems. Applying these
techniques, we can compute provably optimal Dali alignments for the very first
time
Shepard avocado maturity consumer sensory research
Dry matter content (DM) of avocados represents the amount of carbohydrates and nutrients that have been transported from the tree into the fruit. The longer the avocado remains on the tree, the higher the dry matter, and consequently, %DM is used by growers to decide when avocados are ready to harvest. In the current study, 112 consumers tasted ‘Shepard’, a variety of avocado that can be harvested early in the season. The avocados were collected from a range of locations in Northern Queensland in order to ensure that fruit of varying maturity (%DM) were available for tasting at the same time. Consumers’ liking of flavour increased progressively as the DM content of avocados increased from 18% to 23% but then reached a plateau, where further increases in DM did not result in corresponding increases in liking. The immature (lower DM) avocados were frequently described as having ‘bland/tasteless’ or ‘watery’ flavour as well as being less liked than other avocados. Following tasting, consumers were asked about their experience with avocados and the extent that a quality guarantee offering to refund or replace damaged fruit might increase purchasing. Consumers continued to report a high incidence and severity of damage in the avocados they purchased for consumption at home. The study indicated that consumers’ willingness to buy avocados increased as a consequence of the quality guarantee
Shepard avocado maturity consumer sensory research
Dry matter content (DM) of avocados represents the amount of carbohydrates and nutrients that have been transported from the tree into the fruit. The longer the avocado remains on the tree, the higher the dry matter, and consequently, %DM is used by growers to decide when avocados are ready to harvest. In the current study, 112 consumers tasted ‘Shepard’, a variety of avocado that can be harvested early in the season. The avocados were collected from a range of locations in Northern Queensland in order to ensure that fruit of varying maturity (%DM) were available for tasting at the same time. Consumers’ liking of flavour increased progressively as the DM content of avocados increased from 18% to 23% but then reached a plateau, where further increases in DM did not result in corresponding increases in liking. The immature (lower DM) avocados were frequently described as having ‘bland/tasteless’ or ‘watery’ flavour as well as being less liked than other avocados. Following tasting, consumers were asked about their experience with avocados and the extent that a quality guarantee offering to refund or replace damaged fruit might increase purchasing. Consumers continued to report a high incidence and severity of damage in the avocados they purchased for consumption at home. The study indicated that consumers’ willingness to buy avocados increased as a consequence of the quality guarantee
Availability of phosphate for phytoplankton and bacteria and of labile organic carbon for bacteria at different pCO2 levels in a mesocosm study
Availability of phosphate for phytoplankton and bacteria and of glucose for bacteria at different pCO2 levels were studied in a mesocosm experiment (PeECE III). Using nutrient-depleted SW Norwegian fjord waters, three different levels of pCO2 (350 μatm: 1×CO2; 700 μatm: 2×CO2; 1050 μatm: 3×CO2) were set up, and nitrate and phosphate were added at the start of the experiment in order to induce a phytoplankton bloom. Despite similar responses of total particulate P concentration and phosphate turnover time at the three different pCO2 levels, the size distribution of particulate P and 33PO4 uptake suggested that phosphate transferred to the >10 μm fraction was greater in the 3×CO2 mesocosm during the first 6–10 days when phosphate concentration was high. During the period of phosphate depletion (after Day 12), specific phosphate affinity and specific alkaline phosphatase activity (APA) suggested a P-deficiency (i.e. suboptimal phosphate supply) rather than a P-limitation for the phytoplankton and bacterial community at the three different pCO2 levels. Specific phosphate affinity and specific APA tended to be higher in the 3×CO2 than in the 2×CO2 and 1×CO2 mesocosms during the phosphate depletion period, although no statistical differences were found. Glucose turnover time was correlated significantly and negatively with bacterial abundance and production but not with the bulk DOC concentration. This suggests that even though constituting a small fraction of the bulk DOC, glucose was an important component of labile DOC for bacteria. Specific glucose affinity of bacteria behaved similarly at the three different pCO2 levels with measured specific glucose affinities being consistently much lower than the theoretical maximum predicted from the diffusion-limited model. This suggests that bacterial growth was not severely limited by the glucose availability. Hence, it seems that the lower availability of inorganic nutrients after the phytoplankton bloom reduced the bacterial capacity to consume labile DOC in the upper mixed layer of the stratified mesocosms
High on grass? Influence of terrain on human walking economy.
Introduction: The metabolic energy cost of human walking has been extensively studied. However, the influence of terrain on the metabolic costs incurred across commonly encountered surfaces is not well understood. Objective: Our objective was to test whether the metabolic cost of walking would vary between treadmill, asphalt, and grass surfaces. We hypothesized that the metabolic energy cost of walking would not differ between the three common level walking conditions: (standard) commercial treadmill, firm asphalt and well-groomed grass field. Methods: Five subjects walked on a level treadmill at speeds ranging from 0.4 m·s-1 to 1.9 m·s-1. Indirect calorimetry was used to measure rates of oxygen uptake under steady-state conditions (Parvo Medics TrueOne 2400, Sandy, UT). The same five subjects walked at 1.0, 1.3, and 1.6 m·s-1 on a 50 meter oval course set up both in a parking lot and in a well-maintained field with short grass. Expired air was collected in Douglas bags during steady-state conditions at each of the three speeds and the gas composition (Parvo Medics TrueOne 2400, Sandy, UT) and gas volume (Dry Gas Meter, Harvard Apparatus, Holliston, MA) were measured for each bag. Analysis: Oxygen uptake was calculated based on gas analysis and volume measurements for the asphalt and grass walking tests, and was obtained from the Parvo Medics system for the treadmill tests. The relative oxygen uptake (ml·kg-1·min-1) at 1.0, 1.3, and 1.6 m·s-1 was compared across the treadmill, asphalt, and grass walking conditions. Results: Oxygen uptake was similar between treadmill and asphalt walking across all speeds; however, oxygen uptake was greater when walking on grass (14.1 ± 0.7 ml·kg-1·min-1) than on the treadmill (13.5 ± 0.6 ml·kg-1·min-1) or on asphalt (13.2 ± 0.6 ml·kg-1·min-1) by 5.2% and 6.6%, respectively. Further, the difference between walking on grass and walking on the treadmill or on asphalt was more pronounced at faster speeds. Conclusion: We conclude that the metabolic energy cost of walking on well-groomed level grass is greater than either walking on a treadmill or on asphalt
Genomic analysis of the kiwifruit pathogen Pseudomonas syringae pv. actnidiae provides insight into the origins of an emergent plant disease
The origins of crop diseases are linked to domestication of plants. Most crops were domesticated centuries – even millennia – ago, thus limiting opportunity to understand the concomitant emergence of disease. Kiwifruit (Actinidia spp.) is an exception: domestication began in the 1930s with outbreaks of canker disease caused by P. syringae pv. actinidiae (Psa) first recorded in the 1980s. Based on SNP analyses of two circularized and 34 draft genomes, we show that Psa is comprised of distinct clades exhibiting negligible within-clade diversity, consistent with disease arising by independent samplings from a source population. Three clades correspond to their geographical source of isolation; a fourth, encompassing the Psa-V lineage responsible for the 2008 outbreak, is now globally distributed. Psa has an overall clonal population structure, however, genomes carry a marked signature of within-pathovar recombination. SNP analysis of Psa-V reveals hundreds of polymorphisms; however, most reside within PPHGI-1-like conjugative elements whose evolution is unlinked to the core genome. Removal of SNPs due to recombination yields an uninformative (star-like) phylogeny consistent with diversification of Psa-V from a single clone within the last ten years. Growth assays provide evidence of cultivar specificity, with rapid systemic movement of Psa-V in Actinidia chinensis. Genomic comparisons show a dynamic genome with evidence of positive selection on type III effectors and other candidate virulence genes. Each clade has highly varied complements of accessory genes encoding effectors and toxins with evidence of gain and loss via multiple genetic routes. Genes with orthologs in vascular pathogens were found exclusively within Psa-V. Our analyses capture a pathogen in the early stages of emergence from a predicted source population associated with wild Actinidia species. In addition to candidate genes as targets for resistance breeding programs, our findings highlight the importance of the source population as a reservoir of new disease
Temporal Processing of Vibratory Communication Signals at the Level of Ascending Interneurons in Nezara viridula (Hemiptera: Pentatomidae)
During mating, males and females of N. viridula (Heteroptera: Pentatomidae) produce sex- and species-specific calling and courtship substrate-borne vibratory signals, grouped into songs. Recognition and localization of these signals are fundamental for successful mating. The recognition is mainly based on the temporal pattern, i.e. the amplitude modulation, while the frequency spectrum of the signals usually only plays a minor role. We examined the temporal selectivity for vibratory signals in four types of ascending vibratory interneurons in N. viridula. Using intracellular recording and labelling technique, we analyzed the neurons' responses to 30 pulse duration/interval duration (PD/ID) combinations. Two response arrays were created for each neuron type, showing the intensity of the responses either as time-averaged spike counts or as peak instantaneous spike rates. The mean spike rate response arrays showed preference of the neurons for short PDs (below 600 ms) and no selectivity towards interval duration; while the peak spike rate response arrays exhibited either short PD/long ID selectivity or no selectivity at all. The long PD/short ID combinations elicited the weakest responses in all neurons tested. No response arrays showed the receiver preference for either constant period or duty cycle. The vibratory song pattern selectivity matched the PD of N. viridula male vibratory signals, thus pointing to temporal filtering for the conspecific vibratory signals already at level of the ascending interneurons. In some neurons the responses elicited by the vibratory stimuli were followed by distinct, regular oscillations of the membrane potential. The distance between the oscillation peaks matched the temporal structure of the male calling song, indicating a possible resonance based mechanism for signal recognition
- …