183 research outputs found

    Nematic liquid crystal alignment on chemical patterns

    Get PDF
    Patterned Self-Assembled Monolayers (SAMs) promoting both homeotropic and planar degenerate alignment of 6CB and 9CB in their nematic phase, were created using microcontact printing of functionalised organothiols on gold films. The effects of a range of different pattern geometries and sizes were investigated, including stripes, circles and checkerboards. EvanescentWave Ellipsometry was used to study the orientation of the liquid crystal (LC) on these patterned surfaces during the isotropic-nematic phase transition. Pretransitional growth of a homeotropic layer was observed on 1 ¹m homeotropic aligning stripes, followed by a homeotropic mono-domain state prior to the bulk phase transition. Accompanying Monte-Carlo simulations of LCs aligned on nano-patterned surfaces were also performed. These simulations also showed the presence of the homeotropic mono-domain state prior to the transition.</p

    WASP-4b Arrived Early for the TESS Mission

    Get PDF
    The Transiting Exoplanet Survey Satellite (TESS) recently observed 18 transits of the hot Jupiter WASP-4b. The sequence of transits occurred 81.6 ±\pm 11.7 seconds earlier than had been predicted, based on data stretching back to 2007. This is unlikely to be the result of a clock error, because TESS observations of other hot Jupiters (WASP-6b, 18b, and 46b) are compatible with a constant period, ruling out an 81.6-second offset at the 6.4σ\sigma level. The 1.3-day orbital period of WASP-4b appears to be decreasing at a rate of P˙=12.6±1.2\dot{P} = -12.6 \pm 1.2 milliseconds per year. The apparent period change might be caused by tidal orbital decay or apsidal precession, although both interpretations have shortcomings. The gravitational influence of a third body is another possibility, though at present there is minimal evidence for such a body. Further observations are needed to confirm and understand the timing variation.Comment: AJ accepte

    Detection of Potential Transit Signals in the First Three Quarters of Kepler Mission Data

    Full text link
    We present the results of a search for potential transit signals in the first three quarters of photometry data acquired by the Kepler Mission. The targets of the search include 151,722 stars which were observed over the full interval and an additional 19,132 stars which were observed for only 1 or 2 quarters. From this set of targets we find a total of 5,392 detections which meet the Kepler detection criteria: those criteria are periodicity of the signal, an acceptable signal-to-noise ratio, and a composition test which rejects spurious detections which contain non-physical combinations of events. The detected signals are dominated by events with relatively low signal-to-noise ratio and by events with relatively short periods. The distribution of estimated transit depths appears to peak in the range between 40 and 100 parts per million, with a few detections down to fewer than 10 parts per million. The detected signals are compared to a set of known transit events in the Kepler field of view which were derived by a different method using a longer data interval; the comparison shows that the current search correctly identified 88.1% of the known events. A tabulation of the detected transit signals, examples which illustrate the analysis and detection process, a discussion of future plans and open, potentially fruitful, areas of further research are included

    Detection of Potential Transit Signals in Sixteen Quarters of Kepler Mission Data

    Full text link
    We present the results of a search for potential transit signals in four years of photometry data acquired by the Kepler Mission. The targets of the search include 111,800 stars which were observed for the entire interval and 85,522 stars which were observed for a subset of the interval. We found that 9,743 targets contained at least one signal consistent with the signature of a transiting or eclipsing object, where the criteria for detection are periodicity of the detected transits, adequate signal-to-noise ratio, and acceptance by a number of tests which reject false positive detections. When targets that had produced a signal were searched repeatedly, an additional 6,542 signals were detected on 3,223 target stars, for a total of 16,285 potential detections. Comparison of the set of detected signals with a set of known and vetted transit events in the Kepler field of view shows that the recovery rate for these signals is 96.9%. The ensemble properties of the detected signals are reviewed.Comment: Accepted by ApJ Supplemen

    KOI-54: The Kepler Discovery of Tidally Excited Pulsations and Brightenings in a Highly Eccentric Binary

    Get PDF
    Kepler observations of the star HD 187091 (KIC 8112039, hereafter KOI-54) revealed a remarkable light curve exhibiting sharp periodic brightening events every 41.8 days with a superimposed set of oscillations forming a beating pattern in phase with the brightenings. Spectroscopic observations revealed that this is a binary star with a highly eccentric orbit, e = 0.83. We are able to match the Kepler light curve and radial velocities with a nearly face-on (i = 5 degrees.5) binary star model in which the brightening events are caused by tidal distortion and irradiation of nearly identical A stars during their close periastron passage. The two dominant oscillations in the light curve, responsible for the beating pattern, have frequencies that are the 91st and 90th harmonic of the orbital frequency. The power spectrum of the light curve, after removing the binary star brightening component, reveals a large number of pulsations, 30 of which have a signal-to-noise ratio greater than or similar to 7. Nearly all of these pulsations have frequencies that are either integer multiples of the orbital frequency or are tidally split multiples of the orbital frequency. This pattern of frequencies unambiguously establishes the pulsations as resonances between the dynamic tides at periastron and the free oscillation modes of one or both of the stars. KOI-54 is only the fourth star to show such a phenomenon and is by far the richest in terms of excited modes.NASA, Science Mission DirectorateNASA NNX08AR14GEuropean Research Council under the European Community 227224W.M. Keck FoundationMcDonald Observator

    Planetary Candidates Observed by Kepler. VIII. A Fully Automated Catalog with Measured Completeness and Reliability Based on Data Release 25

    Full text link
    We present the Kepler Object of Interest (KOI) catalog of transiting exoplanets based on searching 4 yr of Kepler time series photometry (Data Release 25, Q1–Q17). The catalog contains 8054 KOIs, of which 4034 are planet candidates with periods between 0.25 and 632 days. Of these candidates, 219 are new, including two in multiplanet systems (KOI-82.06 and KOI-2926.05) and 10 high-reliability, terrestrial-size, habitable zone candidates. This catalog was created using a tool called the Robovetter, which automatically vets the DR25 threshold crossing events (TCEs). The Robovetter also vetted simulated data sets and measured how well it was able to separate TCEs caused by noise from those caused by low signal-to-noise transits. We discuss the Robovetter and the metrics it uses to sort TCEs. For orbital periods less than 100 days the Robovetter completeness (the fraction of simulated transits that are determined to be planet candidates) across all observed stars is greater than 85%. For the same period range, the catalog reliability (the fraction of candidates that are not due to instrumental or stellar noise) is greater than 98%. However, for low signal-to-noise candidates between 200 and 500 days around FGK-dwarf stars, the Robovetter is 76.7% complete and the catalog is 50.5% reliable. The KOI catalog, the transit fits, and all of the simulated data used to characterize this catalog are available at the NASA Exoplanet Archive

    A First Comparison of Kepler Planet Candidates in Single and Multiple Systems

    Get PDF
    In this letter we present an overview of the rich population of systems with multiple candidate transiting planets found in the first four months of Kepler data. The census of multiples includes 115 targets that show 2 candidate planets, 45 with 3, 8 with 4, and 1 each with 5 and 6, for a total of 170 systems with 408 candidates. When compared to the 827 systems with only one candidate, the multiples account for 17 percent of the total number of systems, and a third of all the planet candidates. We compare the characteristics of candidates found in multiples with those found in singles. False positives due to eclipsing binaries are much less common for the multiples, as expected. Singles and multiples are both dominated by planets smaller than Neptune; 69 +2/-3 percent for singles and 86 +2/-5 percent for multiples. This result, that systems with multiple transiting planets are less likely to include a transiting giant planet, suggests that close-in giant planets tend to disrupt the orbital inclinations of small planets in flat systems, or maybe even to prevent the formation of such systems in the first place.Comment: 13 pages, 13 figures, submitted to ApJ Letter

    Determination of the director profile in a nematic cell from guided wave data: an inverse problem

    Get PDF
    Copyright © 2007 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. This is the published version of an article published in New Journal of Physics Vol. 9, article 166. DOI: 10.1088/1367-2630/9/6/166We consider an inverse problem: the estimation of the nematic director profile from experimental fully leaky guided mode data. This inverse problem is ill-posed in that small changes in the data may lead to large changes in the estimates of the director profile. The continuum equations for a nematic are exploited to stabilize the problem. We use experimental data drawn from a study of the dynamics of a hybrid-aligned nematic cell as an example

    Discovery and Rossiter-McLaughlin Effect of Exoplanet Kepler-8b

    Get PDF
    We report the discovery and the Rossiter-McLaughlin effect of Kepler-8b, a transiting planet identified by the NASA Kepler Mission. Kepler photometry and Keck-HIRES radial velocities yield the radius and mass of the planet around this F8IV subgiant host star. The planet has a radius RP = 1.419 RJ and a mass, MP = 0.60 MJ, yielding a density of 0.26 g cm^-3, among the lowest density planets known. The orbital period is P = 3.523 days and orbital semima jor axis is 0.0483+0.0006/-0.0012 AU. The star has a large rotational v sin i of 10.5 +/- 0.7 km s^-1 and is relatively faint (V = 13.89 mag), both properties deleterious to precise Doppler measurements. The velocities are indeed noisy, with scatter of 30 m s^-1, but exhibit a period and phase consistent with the planet implied by the photometry. We securely detect the Rossiter-McLaughlin effect, confirming the planet's existence and establishing its orbit as prograde. We measure an inclination between the projected planetary orbital axis and the projected stellar rotation axis of lambda = -26.9 +/- 4.6 deg, indicating a moderate inclination of the planetary orbit. Rossiter-McLaughlin measurements of a large sample of transiting planets from Kepler will provide a statistically robust measure of the true distribution of spin-orbit orientations for hot jupiters in general.Comment: 26 pages, 8 figures, 2 tables; In preparation for submission to the Astrophysical Journa
    corecore