22 research outputs found

    Policy implications of downscaling the time dimension in power system planning models to represent variability in renewable output

    Get PDF
    Due to computational constraints, power system planning models are typically unable to incorporate full annual temporal resolution. In order to represent the increased variability induced by large amounts of variable renewable energy sources, two methods are investigated to reduce the time dimension: the integral approach (using typical hours based on demand and renewable output) and the representative days method (using typical days to capture annual variability). These two approaches are tested with a benchmark implementation that incorporates full time representation in order identify their suitability for assessing power systems with high renewable penetration. The integral method predicts renewable capacities within a 10% error margin, this paper\u27s main performance metric, using just 32 time steps, while the representative days approach needs 160–200 time steps before providing similarly accurate renewable capacity estimates. Since the integral method generally cannot handle variation management, such as trade and storage, without enhancing the state-space representation, it may be more applicable to one-node models, while the representative days method is suitable for multi-regional models. In order to assess power systems with increasing renewable policy targets, models should be designed to handle at least the 160 time steps needed to provide results that do not systematically overestimate the renewable capacity share

    A Review of Energy Storage System Legislation in the US and the European Union

    No full text
    Purpose of Review: This paper focuses on the current possibilities for energy storage systems (ESS) to participate in different power system services. ESS can provide multiple services such as spinning reserve, deferral upgrades, and energy management. However, this versatility of ESS poses a challenge for regulators in designing markets where ESS have prominent roles. We assess recent regulatory proposals in the US and the EU in order to understand their implications for ESS. / Recent Findings: These proposals attempt to improve the current rules for efficient ESS deployment. Nevertheless, they have different approaches to the same problem. We discuss these differences in an attempt to shed light on the regulatory debate about ESS ownership and market design. / Summary: The successful integration of ESS will depend on proper incentives to provide multiple services without hampering the current market structure. New asset definitions could help to define the roles of ESS as either a generation or a transmission asset

    The impact of convexity on expansion planning in low-carbon electricity markets

    No full text
    Abstract Expansion planning models are tools frequently employed to analyze the transition to a carbon-neutral power system. Such models provide estimates for an optimal technology mix and optimal operating decisions, but they are also often used to obtain prices and subsequently calculate profits. This paper analyzes the impact of modeling assumptions on convexity for power system outcomes and, in particular, on investment cost recovery. Through a case study, we find that although there is a long-term equilibrium for producers under convex models, introducing realistic constraints, such as non-convexities/lumpiness of investments, inelastic demand or unit commitment constraints, leads to profitability challenges. We furthermore demonstrate that considering only short-term marginal costs in market-clearing may potentially create a significant missing-money problem caused by a missing-market problem and dual degeneracy in a 100 percent renewable system

    Opportunity cost including short-term energy storage in hydrothermal dispatch models using a linked representative periods approach

    Get PDF
    Short-term energy storage systems, e.g., batteries, are becoming one promising option to deal with flexibility requirements in power systems due to the accommodation of renewable energy sources. Previous works using medium- and long-term planning tools have modeled the interaction between short-term energy storage systems and seasonal storage (e.g., hydro reservoirs) but despite these developments, opportunity costs considering the impact of short-term energy storage systems in stochastic hydrothermal dispatch models have not been analyzed. This paper proposes a novel formulation to include short-term energy storage systems operational decisions in a stochastic hydrothermal dispatch model, which is based on a Linked Representative Periods approach. The Linked Representative Periods approach disposes of both intra- and inter-period storage constraints, which in turn allow to adequately represent both short- and long-term storage at the same time. Apart from the novelty of the model formulation itself, one of the main contributions of this research stems from the underlying economic information that can be extracted from the dual variables of the intra- and inter-period constraints, which allows to derive an hourly opportunity cost of storage. Such a detailed hourly economic value of storage has not been proposed before in the literature and is not possible in a classic Load Duration Curve model that does not adequately capture short-term operation. This advantage is reflected in the case study results. For instance, the model proposed in this paper and based on Linked Representative Periods obtains operating decisions of short-term energy storage systems with errors between 5% to 10%, while the classic Load Duration Curve approach fails by an error greater than 100%. Moreover, the Load Duration Curve model cannot determine opportunity costs on an hourly basis and underestimates these opportunity costs of hydro (also known as water value) by 6% to 24% for seasonal hydro reservoirs. The proposed Linked Representative Periods model produces an error on the opportunity cost of hydro units lower than 3%. Hourly opportunity costs for short-term battery energy storage systems using dual variables from both intra- and inter-period storage balance equations in the proposed model are also presented and analyzed. The case study shows that the proposed approach successfully internalizes both short- and long-term opportunity costs of energy storage systems. These results are useful for planning and policy analysis, as well as for bidding strategies of ESS owners in day-ahead markets and not taking them into account may lead to infeasible operation or to suboptimal planning
    corecore