118 research outputs found
An Exploratory Pathways Analysis of Temporal Changes Induced by Spinal Cord Injury in the Rat Bladder Wall: Insights on Remodeling and Inflammation
Background: Spinal cord injuries (SCI) can lead to severe bladder pathologies associated with inflammation, fibrosis, and increased susceptibility to urinary tract infections. We sought to characterize the complex pathways of remodeling, inflammation, and infection in the urinary bladder at the level of the transcriptome in a rat model of SCI, using pathways analysis bioinformatics. Methodology/Principal Findings: Experimental data were obtained from the study of Nagatomi et al. (Biochem Biophys Res Commun 334: 1159). In this study, bladders from rats subjected to surgical SCI were obtained at 3, 7 or 25 days post-surgery, and Affymetrix GeneChip® Rat Genome U34A arrays were used for cRNA hybridizations. In the present study, Ingenuity Pathways Analysis (Ingenuity® Systems, www.ingenuity.com) of differentially expressed genes was performed. Analysis of focus genes in networks, functional analysis, and canonical pathway analysis reinforced our previous findings related to the presence of up-regulated genes involved in tissue remodeling, such as lysyl oxidase, tropoelastin, TGF-β1, and IGF-1. This analysis also highlighted a central role for inflammation and infection, evidenced by networks containing genes such as CD74, S100A9, and THY1. Conclusions/Significance: Our findings suggest that tissue remodeling, infection, inflammation, and tissue damage/ dysfunction all play a role in the urinary bladder, in the complex response to SCI. © 2009 Wognum et al
Facilitated engraftment of human hematopoietic cells in severe combined immunodeficient mice following a single injection of Cl²MDP liposomes
Transplantation of normal and malignant human hematopoietic cells into severe combined immunodeficient (SCID) mice allows for evaluation of long-term growth abilities of these cells and provides a preclinical model for therapeutic interventions. However, large numbers of cells are required for successful engraftment in preirradiated mice due to residual graft resistance, that may be mediated by cells from the mononuclear phagocytic system. Intravenous (i.v.) injection of liposomes containing dichloromethylene diphosphonate (Cl2MDP) may eliminate mouse macrophages in spleen and liver. In this study outgrowth of acute myeloid leukemia (AML) cells and umbilical cord blood (UCB) cells in SCID mice conditioned with a single i.v. injection of Cl2MDP liposomes in addition to sublethal total body irradiation (TBI) was compared to outgrowth of these cells in SCID mice that had received TBI alone. A two- to 10-fold increase in outgrowth of AML cells was observed in four cases of AML. Administration of 107 UCB cells reproducibly engrafted SCID mice that had been conditioned with Cl2MDP liposomes and TBI, whereas human cells were not detected in mice conditioned with TBI alone. As few as 2 x 104 purified CD34+ UCB cells engrafted in all mice treated with Cl2MDP liposomes. In SCID mice treated with macrophage depletion unexpected graft failures were not observed. Histological examination of the spleen showed that TBI and Cl2MDP liposomes i.v. resulted in a transient elimination of all macrophage subsets in the spleen, whereas TBI had a minor effect. Cl2MDP liposomes were easy to use and their application was not associated with appreciable side-effects. Cl2MDP liposome pretreatment in combination with TBI allows for reproducible outgrowth of high numbers of human hematopoietic cells in SCID mice
An Exploratory Pathways Analysis of Temporal Changes Induced by Spinal Cord Injury in the Rat Bladder Wall: Insights on Remodeling and Inflammation
Abstract Background: Spinal cord injuries (SCI) can lead to severe bladder pathologies associated with inflammation, fibrosis, and increased susceptibility to urinary tract infections. We sought to characterize the complex pathways of remodeling, inflammation, and infection in the urinary bladder at the level of the transcriptome in a rat model of SCI, using pathways analysis bioinformatics
PLM in SME, what are we missing? an alternative view on PLM implementation for SME
Part 10: PLM Maturity, Implementation and AdoptionInternational audienceToday, the concept of Product Lifecycle Management (PLM) is widely accepted as strategically important. It is used to manage the increasing complexity of products, processes and organizations. The need to adopt PLM is growing rapidly for Small to Medium-sized Enterprises (SME). PLM implementations are costly and require a lot of effort. The business impact and financial risks are high for SME. Also, SMEs seem to have relatively more difficulties to benefit from PLM. The study at hand addresses the question, based on literature research, why these difficulties exist and how they can be overcome. To answer that question, three sub questions are discussed in this paper. (1) A generic PLM implementation process structure. (2) A list of identified PLM implementation challenges, specific for SME. (3) A classification of PLM research for SME, related to the common PLM implementation process structure. A hypothesis for a PLM implementation failure mechanism in SMEs is formulated, based on the findings. Also, a potential research gap on operational implementation knowledge in SMEs is identified
Inflammatory Gene Regulatory Networks in Amnion Cells Following Cytokine Stimulation: Translational Systems Approach to Modeling Human Parturition
A majority of the studies examining the molecular regulation of human labor have
been conducted using single gene approaches. While the technology to produce
multi-dimensional datasets is readily available, the means for facile analysis
of such data are limited. The objective of this study was to develop a systems
approach to infer regulatory mechanisms governing global gene expression in
cytokine-challenged cells in vitro, and to apply these methods
to predict gene regulatory networks (GRNs) in intrauterine tissues during term
parturition. To this end, microarray analysis was applied to human amnion
mesenchymal cells (AMCs) stimulated with interleukin-1β, and differentially
expressed transcripts were subjected to hierarchical clustering, temporal
expression profiling, and motif enrichment analysis, from which a GRN was
constructed. These methods were then applied to fetal membrane specimens
collected in the absence or presence of spontaneous term labor. Analysis of
cytokine-responsive genes in AMCs revealed a sterile immune response signature,
with promoters enriched in response elements for several inflammation-associated
transcription factors. In comparison to the fetal membrane dataset, there were
34 genes commonly upregulated, many of which were part of an acute inflammation
gene expression signature. Binding motifs for nuclear factor-κB were
prominent in the gene interaction and regulatory networks for both datasets;
however, we found little evidence to support the utilization of
pathogen-associated molecular pattern (PAMP) signaling. The tissue specimens
were also enriched for transcripts governed by hypoxia-inducible factor. The
approach presented here provides an uncomplicated means to infer global
relationships among gene clusters involved in cellular responses to
labor-associated signals
Hematopoietic stem cell transplantation for multiple sclerosis: is it a clinical reality?
Hematopoietic stem cell transplantation (HSCT) is a treatment paradigm that has long been utilized for cancers of the blood and bone marrow but has gained some traction as a treatment paradigm for multiple sclerosis (MS). Success in the treatment of patients with this approach has been reported primarily when strict inclusion criteria are imposed that have eventuated a more precise understanding of MS pathophysiology, thereby governing trial design. Moreover, enhancing the yield and purity of hematopoietic stem cells during isolation along with the utility of appropriate conditioning agents has provided a clearer foundation for clinical translation studies. To support this approach, preclinical data derived from animal models of MS, experimental autoimmune encephalomyelitis, have provided clear identification of multipotent stem cells that can reconstitute the immune system to override the autoimmune attack of the central nervous system. In this review, we will discuss the rationale of HSCT to treat MS by providing the benefits and complications of the clinically relevant protocols, the varying graft types, and conditioning regimens. However, we emphasize that future trials based on HSCT should be focused on specific therapeutic strategies to target and limit ongoing neurodegeneration and demyelination in progressive MS, in the hope that such treatment may serve a greater catchment of patient cohorts with potentially enhanced efficiency and lower toxicity. Despite these future ambitions, a proposed international multicenter, randomized clinical trial of HSCT should be governed by the best standard care of treatment, whereby MS patients are selected upon strict clinical course criteria and long-term follow-up studies of patients from international registries are imposed to advocate HSCT as a therapeutic option in the management of MS
- …