825 research outputs found
Template Lattices for a Cross-Correlation Search for Gravitational Waves from Scorpius X-1
We describe the application of the lattice covering problem to the placement
of templates in a search for continuous gravitational waves from the low-mass
X-Ray binary Scorpius X-1. Efficient placement of templates to cover the
parameter space at a given maximum mismatch is an application of the sphere
covering problem, for which an implementation is available in the LatticeTiling
software library. In the case of Sco X-1, potential correlations, in both the
prior uncertainty and the mismatch metric, between the orbital period and
orbital phase, lead to complications in the efficient construction of the
lattice. We define a shearing coordinate transformation which simultaneously
minimizes both of these sources of correlation, and allows us to take advantage
of the small prior orbital period uncertainty. The resulting lattices have a
factor of about 3 fewer templates than the corresponding parameter space grids
constructed by the prior straightforward method, allowing a more sensitive
search at the same computing cost and maximum mismatch.Comment: 21 pages, 8 figure
A Comprehensive Comparative Test of Seven Widely-Used Spectral Synthesis Models Against Multi-Band Photometry of Young Massive Star Clusters
We test the predictions of spectral synthesis models based on seven different
massive-star prescriptions against Legacy ExtraGalactic UV Survey (LEGUS)
observations of eight young massive clusters in two local galaxies, NGC 1566
and NGC 5253, chosen because predictions of all seven models are available at
the published galactic metallicities. The high angular resolution, extensive
cluster inventory and full near-ultraviolet to near-infrared photometric
coverage make the LEGUS dataset excellent for this study. We account for both
stellar and nebular emission in the models and try two different prescriptions
for attenuation by dust. From Bayesian fits of model libraries to the
observations, we find remarkably low dispersion in the median E(B-V) (~0.03
mag), stellar masses (~10^4 M_\odot) and ages (~1 Myr) derived for individual
clusters using different models, although maximum discrepancies in these
quantities can reach 0.09 mag and factors of 2.8 and 2.5, respectively. This is
for ranges in median properties of 0.05-0.54 mag, 1.8-10x10^4 M_\odot and
1.6-40 Myr spanned by the clusters in our sample. In terms of best fit, the
observations are slightly better reproduced by models with interacting binaries
and least well reproduced by models with single rotating stars. Our study
provides a first quantitative estimate of the accuracies and uncertainties of
the most recent spectral synthesis models of young stellar populations,
demonstrates the good progress of models in fitting high-quality observations,
and highlights the needs for a larger cluster sample and more extensive tests
of the model parameter space.Comment: Accepted for publication in MNRAS (14 Jan. 2016). 30 pages, 16
figures, 9 table
LEGUS and Halpha-LEGUS Observations of Star Clusters in NGC 4449: Improved Ages and the Fraction of Light in Clusters as a Function of Age
We present a new catalog and results for the cluster system of the starburst
galaxy NGC 4449 based on multi-band imaging observations taken as part of the
LEGUS and Halpha-LEGUS surveys. We improve the spectral energy fitting method
used to estimate cluster ages and find that the results, particularly for older
clusters, are in better agreement with those from spectroscopy. The inclusion
of Halpha measurements, the role of stochasticity for low mass clusters, the
assumptions about reddening, and the choices of SSP model and metallicity all
have important impacts on the age-dating of clusters. A comparison with ages
derived from stellar color-magnitude diagrams for partially resolved clusters
shows reasonable agreement, but large scatter in some cases. The fraction of
light found in clusters relative to the total light (i.e., T_L) in the U, B,
and V filters in 25 different ~kpc-size regions throughout NGC 4449 correlates
with both the specific Region Luminosity, R_L, and the dominant age of the
underlying stellar population in each region. The observed cluster age
distribution is found to decline over time as dN/dt ~ t^g, with g=-0.85+/-0.15,
independent of cluster mass, and is consistent with strong, early cluster
disruption. The mass functions of the clusters can be described by a power law
with dN/dM ~ M^b and b=-1.86+/-0.2, independent of cluster age. The mass and
age distributions are quite resilient to differences in age-dating methods.
There is tentative evidence for a factor of 2-3 enhancement in both the star
and cluster formation rate ~100 - 300 Myr ago, indicating that cluster
formation tracks star formation generally. The enhancement is probably
associated with an earlier interaction event
‘Speak at this’: An approach to the completion of speech acts during interactive Shakespeare performances in schools
It is 2014 in a secondary school in Scarborough, North Yorkshire. A performance of Romeo and Juliet is taking place in the school hall. An audience of teenagers are sitting on plastic blue chairs arranged in-the-round. During the ‘balcony scene’ the performer playing Romeo asks a member of the audience, ‘Shall I hear more, or shall I speak at this?’, this audience member urges him to ‘hear more’.
This article interrogates this moment in performance, the process that was required to achieve it and the validity of it as a successfully completed Speech Act. Speech Act Theory has been used as a valuable method for Shakespearean textual analysis but this article investigates the merits of its application as a rehearsal technique: What training methods augment the performative nature of audience address? How can current theoretical concerns in audience studies temper the application of Speech Act Theory in this context to provide an open and interactive Shakespeare performance atmosphere for young people?
In order to address these questions, the argument will draw upon media and data from a large scale PaR project based produced by Hull University and the Stephen Joseph Theatre in Yorkshire in 2014
Sampling Local Fungal Diversity in an Undergraduate Laboratory using DNA Barcoding
Traditional methods for fungal species identification require diagnostic morphological characters and are often limited by the availability of fresh fruiting bodies and local identification resources. DNA barcoding offers an additional method of species identification and is rapidly developing as a critical tool in fungal taxonomy. As an exercise in an undergraduate biology course, we identified 9 specimens collected from the Hendrix College campus in Conway, Arkansas, USA to the genus or species level using morphology. We report that DNA barcoding targeting the internal transcribed spacer (ITS) region supported several of our taxonomic determinations and we were able to contribute 5 ITS sequences to GenBank that were supported by vouchered collection information. We suggest that small-scale barcoding projects are possible and that they have value for documenting fungal diversity
Oxidation resistance of graphene-coated Cu and Cu/Ni alloy
The ability to protect refined metals from reactive environments is vital to
many industrial and academic applications. Current solutions, however,
typically introduce several negative effects, including increased thickness and
changes in the metal physical properties. In this paper, we demonstrate for the
first time the ability of graphene films grown by chemical vapor deposition to
protect the surface of the metallic growth substrates of Cu and Cu/Ni alloy
from air oxidation. SEM, Raman spectroscopy, and XPS studies show that the
metal surface is well protected from oxidation even after heating at 200
\degree C in air for up to 4 hours. Our work further shows that graphene
provides effective resistance against hydrogen peroxide. This protection method
offers significant advantages and can be used on any metal that catalyzes
graphene growth
Candidate LBV stars in galaxy NGC 7793 found via HST photometry + MUSE spectroscopy
Only about 19 Galactic and 25 extragalactic bonafide luminous blue variables (LBVs) are known to date. This incomplete census prevents our understanding of this crucial phase of massive star evolution which leads to the formation of heavy binary black holes via the classical channel. With large samples of LBVs one could better determine the duration and maximum stellar luminosity which characterize this phase. We search for candidate LBVs (cLBVs) in a new galaxy, NGC 7793. For this purpose, we combine high spatial resolution images from two Hubble Space Telescope (HST) programs with optical spectroscopy from the Multi Unit Spectroscopic Explorer (MUSE). By combining PSF-fitting photometry measured on F547M, F657N, and F814W images, with restrictions on point-like appearance (at HST resolution) and H α luminosity, we find 100 potential cLBVs, 36 of which fall in the MUSE fields. Five of the latter 36 sources are promising cLBVs which have MV ≤ −7 and a combination of: H α with a P-Cygni profile; no [O I]λ6300 emission; weak or no [O III]λ5007 emission; large [N II]/H α relative to H II regions; and [S II]λ6716/[S II]λ6731∼1. It is not clear if these five cLBVs are isolated from O-type stars, which would favour the binary formation scenario of LBVs. Our study, which approximately covers one fourth of the optical disc of NGC 7793, demonstrates how by combining the above HST surveys with multi-object spectroscopy from 8-m class telescopes, one can efficiently find large samples of cLBVs in nearby galaxies
- …