2 research outputs found

    Rotation-invariant observables in parity-violating decays of vector particles to fermion pairs

    Full text link
    The di-fermion angular distribution observed in decays of inclusively produced vector particles is characterized by two frame-independent observables, reflecting the average spin-alignment of the produced particle and the magnitude of parity violation in the decay. The existence of these observables derives from the rotational properties of angular momentum eigenstates and is a completely general result, valid for any J=1 state and independent of the production process. Rotation-invariant formulations of polarization and of the decay parity-asymmetry can provide more significant measurements than the commonly used frame-dependent definitions, also improving the quality of the comparisons between the measurements and the theoretical calculations.Comment: To be published in Phys. Rev.

    Quarkonium production in the LHC era: a polarized perspective

    Get PDF
    Polarization measurements are usually considered as the most difficult challenge for the QCD description of quarkonium production. In fact, global data fits for the determination of the non-perturbative parameters of bound-state formation traditionally exclude polarization observables and use them as a posteriori verifications of the predictions, with perplexing results. With a change of perspective, we move polarization data to the centre of the study, advocating that they actually provide the strongest fundamental indications about the production mechanisms, even before we explicitly consider perturbative calculations. Considering psi(2S) and Y(3S) measurements from LHC experiments and state-of-the-art NLO short-distance calculations in the framework of non-relativistic QCD factorization (NRQCD), we perform a search for a kinematic domain where the polarizations can be correctly reproduced together with the cross sections, by systematically scanning the phase space and accurately treating the experimental uncertainties. This strategy provides a straightforward solution to the "quarkonium polarization puzzle" and reassuring signs that the theoretical framework is reliable. At the same time, the results expose unexpected hierarchies in the non-perturbative NRQCD parameters, that open new paths towards the understanding of bound-state formation in QCD.Comment: Submitted to Phys. Lett.
    corecore