1,269 research outputs found
Computational problems without computation
Problemen uit de discrete wiskunde lijken op het eerste gezicht vaak erg simpel. Ze kunnen meestal gemakkelijk en zonder gebruik te maken van wiskundige begrippen worden geformuleerd. Toch komt het vaak voor dat zo’n ogenschijnlijk eenvoudig probleem nog open is of dat er, zoals bij het handelsreizigersprobleem, wel een oplossing gegeven kan worden,maar alleen een die onbruikbaar is omdat de rekentijd bij grotere getallen te snel groeit. In dit artikel, gebaseerd op zijn voordracht op het NMC 2002, kijkt Gerhard Woeginger naar de tegenovergestelde situatie. Hij introduceert allerlei discrete\ud
problemen die onoplosbaar lijken, maar waarvoor er een simpele oplossing bestaat
Are there any nicely structured preference~profiles~nearby?
We investigate the problem of deciding whether a given preference profile is
close to having a certain nice structure, as for instance single-peaked,
single-caved, single-crossing, value-restricted, best-restricted,
worst-restricted, medium-restricted, or group-separable profiles. We measure
this distance by the number of voters or alternatives that have to be deleted
to make the profile a nicely structured one. Our results classify the problem
variants with respect to their computational complexity, and draw a clear line
between computationally tractable (polynomial-time solvable) and
computationally intractable (NP-hard) questions
Geometric versions of the 3-dimensional assignment problem under general norms
We discuss the computational complexity of special cases of the 3-dimensional
(axial) assignment problem where the elements are points in a Cartesian space
and where the cost coefficients are the perimeters of the corresponding
triangles measured according to a certain norm. (All our results also carry
over to the corresponding special cases of the 3-dimensional matching problem.)
The minimization version is NP-hard for every norm, even if the underlying
Cartesian space is 2-dimensional. The maximization version is polynomially
solvable, if the dimension of the Cartesian space is fixed and if the
considered norm has a polyhedral unit ball. If the dimension of the Cartesian
space is part of the input, the maximization version is NP-hard for every
norm; in particular the problem is NP-hard for the Manhattan norm and the
Maximum norm which both have polyhedral unit balls.Comment: 21 pages, 9 figure
Backbone colorings for networks: tree and path backbones
We introduce and study backbone colorings, a variation on classical vertex colorings: Given a graph and a spanning subgraph of (the backbone of ), a backbone coloring for and is a proper vertex coloring of in which the colors assigned to adjacent vertices in differ by at least two. We study the cases where the backbone is either a spanning tree or a spanning path
The dynamics of power laws: Fitness and aging in preferential attachment trees
Continuous-time branching processes describe the evolution of a population
whose individuals generate a random number of children according to a birth
process. Such branching processes can be used to understand preferential
attachment models in which the birth rates are linear functions. We are
motivated by citation networks, where power-law citation counts are observed as
well as aging in the citation patterns. To model this, we introduce fitness and
age-dependence in these birth processes. The multiplicative fitness moderates
the rate at which children are born, while the aging is integrable, so that
individuals receives a finite number of children in their lifetime. We show the
existence of a limiting degree distribution for such processes. In the
preferential attachment case, where fitness and aging are absent, this limiting
degree distribution is known to have power-law tails. We show that the limiting
degree distribution has exponential tails for bounded fitnesses in the presence
of integrable aging, while the power-law tail is restored when integrable aging
is combined with fitness with unbounded support with at most exponential tails.
In the absence of integrable aging, such processes are explosive.Comment: 41 pages, 10 figure
A combinatorial approximation algorithm for CDMA downlink rate allocation
This paper presents a combinatorial algorithm for downlink rate allocation in Code Division Multiple Access (CDMA) mobile networks. By discretizing the coverage area into small segments, the transmit power requirements are characterized via a matrix representation that separates user and system characteristics. We obtain a closed-form analytical expression for the so-called Perron-Frobenius eigenvalue of that matrix, which provides a quick assessment of the feasibility of the power assignment for a given downlink rate allocation. Based on the Perron-Frobenius eigenvalue, we reduce the downlink rate allocation problem to a set of multiple-choice knapsack problems. The solution of these problems provides an approximation of the optimal downlink rate allocation and cell borders for which the system throughput, expressed in terms of utility functions of the users, is maximized
Planar 3-dimensional assignment problems with Monge-like cost arrays
Given an cost array we consider the problem -P3AP
which consists in finding pairwise disjoint permutations
of such that
is minimized. For the case
the planar 3-dimensional assignment problem P3AP results.
Our main result concerns the -P3AP on cost arrays that are layered
Monge arrays. In a layered Monge array all matrices that result
from fixing the third index are Monge matrices. We prove that the -P3AP
and the P3AP remain NP-hard for layered Monge arrays. Furthermore, we show that
in the layered Monge case there always exists an optimal solution of the
-3PAP which can be represented as matrix with bandwidth . This
structural result allows us to provide a dynamic programming algorithm that
solves the -P3AP in polynomial time on layered Monge arrays when is
fixed.Comment: 16 pages, appendix will follow in v
Planar graph coloring avoiding monochromatic subgraphs: trees and paths make things difficult
We consider the problem of coloring a planar graph with the minimum number of colors such that each color class avoids one or more forbidden graphs as subgraphs. We perform a detailed study of the computational complexity of this problem
A branch-and-price algorithm for a hierarchical crew scheduling problem.
We describe a real-life problem arising at a crane rental company. This problem is a generalization of the basic crew scheduling problem given in Mingozzi et al. and Beasley and Cao. We formulate the problem as an integer programming problem and establish ties with the integer multicommodity flow problem and the hierarchical interval scheduling problem. After establishing the complexity of the problem we propose a branch-and-price algorithm to solve it. We test this algorithm on a limited number of real-life instances.Scheduling;
- …