1,269 research outputs found

    Computational problems without computation

    Get PDF
    Problemen uit de discrete wiskunde lijken op het eerste gezicht vaak erg simpel. Ze kunnen meestal gemakkelijk en zonder gebruik te maken van wiskundige begrippen worden geformuleerd. Toch komt het vaak voor dat zo’n ogenschijnlijk eenvoudig probleem nog open is of dat er, zoals bij het handelsreizigersprobleem, wel een oplossing gegeven kan worden,maar alleen een die onbruikbaar is omdat de rekentijd bij grotere getallen te snel groeit. In dit artikel, gebaseerd op zijn voordracht op het NMC 2002, kijkt Gerhard Woeginger naar de tegenovergestelde situatie. Hij introduceert allerlei discrete\ud problemen die onoplosbaar lijken, maar waarvoor er een simpele oplossing bestaat

    Are there any nicely structured preference~profiles~nearby?

    Get PDF
    We investigate the problem of deciding whether a given preference profile is close to having a certain nice structure, as for instance single-peaked, single-caved, single-crossing, value-restricted, best-restricted, worst-restricted, medium-restricted, or group-separable profiles. We measure this distance by the number of voters or alternatives that have to be deleted to make the profile a nicely structured one. Our results classify the problem variants with respect to their computational complexity, and draw a clear line between computationally tractable (polynomial-time solvable) and computationally intractable (NP-hard) questions

    Geometric versions of the 3-dimensional assignment problem under general norms

    Get PDF
    We discuss the computational complexity of special cases of the 3-dimensional (axial) assignment problem where the elements are points in a Cartesian space and where the cost coefficients are the perimeters of the corresponding triangles measured according to a certain norm. (All our results also carry over to the corresponding special cases of the 3-dimensional matching problem.) The minimization version is NP-hard for every norm, even if the underlying Cartesian space is 2-dimensional. The maximization version is polynomially solvable, if the dimension of the Cartesian space is fixed and if the considered norm has a polyhedral unit ball. If the dimension of the Cartesian space is part of the input, the maximization version is NP-hard for every LpL_p norm; in particular the problem is NP-hard for the Manhattan norm L1L_1 and the Maximum norm LL_{\infty} which both have polyhedral unit balls.Comment: 21 pages, 9 figure

    Backbone colorings for networks: tree and path backbones

    Get PDF
    We introduce and study backbone colorings, a variation on classical vertex colorings: Given a graph G=(V,E)G=(V,E) and a spanning subgraph HH of GG (the backbone of GG), a backbone coloring for GG and HH is a proper vertex coloring V{1,2,}V\rightarrow \{1,2,\ldots\} of GG in which the colors assigned to adjacent vertices in HH differ by at least two. We study the cases where the backbone is either a spanning tree or a spanning path

    The dynamics of power laws: Fitness and aging in preferential attachment trees

    Get PDF
    Continuous-time branching processes describe the evolution of a population whose individuals generate a random number of children according to a birth process. Such branching processes can be used to understand preferential attachment models in which the birth rates are linear functions. We are motivated by citation networks, where power-law citation counts are observed as well as aging in the citation patterns. To model this, we introduce fitness and age-dependence in these birth processes. The multiplicative fitness moderates the rate at which children are born, while the aging is integrable, so that individuals receives a finite number of children in their lifetime. We show the existence of a limiting degree distribution for such processes. In the preferential attachment case, where fitness and aging are absent, this limiting degree distribution is known to have power-law tails. We show that the limiting degree distribution has exponential tails for bounded fitnesses in the presence of integrable aging, while the power-law tail is restored when integrable aging is combined with fitness with unbounded support with at most exponential tails. In the absence of integrable aging, such processes are explosive.Comment: 41 pages, 10 figure

    A combinatorial approximation algorithm for CDMA downlink rate allocation

    Get PDF
    This paper presents a combinatorial algorithm for downlink rate allocation in Code Division Multiple Access (CDMA) mobile networks. By discretizing the coverage area into small segments, the transmit power requirements are characterized via a matrix representation that separates user and system characteristics. We obtain a closed-form analytical expression for the so-called Perron-Frobenius eigenvalue of that matrix, which provides a quick assessment of the feasibility of the power assignment for a given downlink rate allocation. Based on the Perron-Frobenius eigenvalue, we reduce the downlink rate allocation problem to a set of multiple-choice knapsack problems. The solution of these problems provides an approximation of the optimal downlink rate allocation and cell borders for which the system throughput, expressed in terms of utility functions of the users, is maximized

    Planar 3-dimensional assignment problems with Monge-like cost arrays

    Get PDF
    Given an n×n×pn\times n\times p cost array CC we consider the problem pp-P3AP which consists in finding pp pairwise disjoint permutations φ1,φ2,,φp\varphi_1,\varphi_2,\ldots,\varphi_p of {1,,n}\{1,\ldots,n\} such that k=1pi=1nciφk(i)k\sum_{k=1}^{p}\sum_{i=1}^nc_{i\varphi_k(i)k} is minimized. For the case p=np=n the planar 3-dimensional assignment problem P3AP results. Our main result concerns the pp-P3AP on cost arrays CC that are layered Monge arrays. In a layered Monge array all n×nn\times n matrices that result from fixing the third index kk are Monge matrices. We prove that the pp-P3AP and the P3AP remain NP-hard for layered Monge arrays. Furthermore, we show that in the layered Monge case there always exists an optimal solution of the pp-3PAP which can be represented as matrix with bandwidth 4p3\le 4p-3. This structural result allows us to provide a dynamic programming algorithm that solves the pp-P3AP in polynomial time on layered Monge arrays when pp is fixed.Comment: 16 pages, appendix will follow in v

    Planar graph coloring avoiding monochromatic subgraphs: trees and paths make things difficult

    Get PDF
    We consider the problem of coloring a planar graph with the minimum number of colors such that each color class avoids one or more forbidden graphs as subgraphs. We perform a detailed study of the computational complexity of this problem

    A branch-and-price algorithm for a hierarchical crew scheduling problem.

    Get PDF
    We describe a real-life problem arising at a crane rental company. This problem is a generalization of the basic crew scheduling problem given in Mingozzi et al. and Beasley and Cao. We formulate the problem as an integer programming problem and establish ties with the integer multicommodity flow problem and the hierarchical interval scheduling problem. After establishing the complexity of the problem we propose a branch-and-price algorithm to solve it. We test this algorithm on a limited number of real-life instances.Scheduling;
    corecore