32 research outputs found
A microfabricated sensor for thin dielectric layers
We describe a sensor for the measurement of thin dielectric layers capable of
operation in a variety of environments. The sensor is obtained by
microfabricating a capacitor with interleaved aluminum fingers, exposed to the
dielectric to be measured. In particular, the device can measure thin layers of
solid frozen from a liquid or gaseous medium. Sensitivity to single atomic
layers is achievable in many configurations and, by utilizing fast, high
sensitivity capacitance read out in a feedback system onto environmental
parameters, coatings of few layers can be dynamically maintained. We discuss
the design, read out and calibration of several versions of the device
optimized in different ways. We specifically dwell on the case in which
atomically thin solid xenon layers are grown and stabilized, in cryogenic
conditions, from a liquid xenon bath
Mobility of thorium ions in liquid xenon
We present a measurement of the Th ion mobility in LXe at 163.0 K and
0.9 bar. The result obtained, 0.2400.011 (stat) 0.011 (syst)
cm/(kV-s), is compared with a popular model of ion transport.Comment: 6.5 pages,
Observation of single collisionally cooled trapped ions in a buffer gas
Individual Ba ions are trapped in a gas-filled linear ion trap and observed
with a high signal-to-noise ratio by resonance fluorescence. Single-ion storage
times of ~5 min (~1 min) are achieved using He (Ar) as a buffer gas at
pressures in the range 8e-5 - 4e-3 torr. Trap dynamics in buffer gases are
experimentally studied in the simple case of single ions. In particular, the
cooling effects of light gases such as He and Ar and the destabilizing
properties of heavier gases such as Xe are studied. A simple model is offered
to explain the observed phenomenology.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev. A. Minor
text and figure change
A linear RFQ ion trap for the Enriched Xenon Observatory
The design, construction, and performance of a linear radio-frequency ion
trap (RFQ) intended for use in the Enriched Xenon Observatory (EXO) are
described. EXO aims to detect the neutrinoless double-beta decay of Xe
to Ba. To suppress possible backgrounds EXO will complement the
measurement of decay energy and, to some extent, topology of candidate events
in a Xe filled detector with the identification of the daughter nucleus
(Ba). The ion trap described here is capable of accepting, cooling, and
confining individual Ba ions extracted from the site of the candidate
double-beta decay event. A single trapped ion can then be identified, with a
large signal-to-noise ratio, via laser spectroscopy.Comment: 18 pages, pdflatex, submitted to NIM
A simple radionuclide-driven single-ion source
We describe a source capable of producing single barium ions through nuclear
recoils in radioactive decay. The source is fabricated by electroplating 148Gd
onto a silicon {\alpha}-particle detector and vapor depositing a layer of BaF2
over it. 144Sm recoils from the alpha decay of 148Gd are used to dislodge Ba+
ions from the BaF2 layer and emit them in the surrounding environment. The
simultaneous detection of an {\alpha} particle in the substrate detector allows
for tagging of the nuclear decay and of the Ba+ emission. The source is simple,
durable, and can be manipulated and used in different environments. We discuss
the fabrication process, which can be easily adapted to emit most other
chemical species, and the performance of the source
A liquid xenon ionization chamber in an all-fluoropolymer vessel
A novel technique has been developed to build vessels for liquid xenon
ionization detectors entirely out of ultra-clean fluoropolymer. We describe the
advantages in terms of low radioactivity contamination, provide some details of
the construction techniques, and show the energy resolution achieved with a
prototype all-fluoropolymer ionization detector.Comment: 12 pages, 9 figure
Search for Neutrinoless Double-Beta Decay in Xe with EXO-200
We report on a search for neutrinoless double-beta decay of Xe with
EXO-200. No signal is observed for an exposure of 32.5 kg-yr, with a background
of ~1.5 x 10^{-3} /(kg yr keV) in the region of interest. This
sets a lower limit on the half-life of the neutrinoless double-beta decay
(Xe) > 1.6 x 10 yr (90% CL),
corresponding to effective Majorana masses of less than 140-380 meV, depending
on the matrix element calculation
A magnetically-driven piston pump for ultra-clean applications
A magnetically driven piston pump for xenon gas recirculation is presented.
The pump is designed to satisfy extreme purity and containment requirements, as
is appropriate for the recirculation of isotopically enriched xenon through the
purification system and large liquid xenon TPC of EXO-200. The pump, using
sprung polymer gaskets, is capable of pumping more than 16 standard liters per
minute (SLPM) of xenon gas with 750 torr differential pressure.Comment: 6 pages, 5 figure
Systematic study of trace radioactive impurities in candidate construction materials for EXO-200
The Enriched Xenon Observatory (EXO) will search for double beta decays of
136Xe. We report the results of a systematic study of trace concentrations of
radioactive impurities in a wide range of raw materials and finished parts
considered for use in the construction of EXO-200, the first stage of the EXO
experimental program. Analysis techniques employed, and described here, include
direct gamma counting, alpha counting, neutron activation analysis, and
high-sensitivity mass spectrometry.Comment: 32 pages, 6 figures. Expanded introduction, added missing table
entry. Accepted for publication in Nucl. Instrum. Meth.