1,056 research outputs found

    Gravitoastronomy with neutron stars

    Get PDF
    Recent advances in gravitational wave detectors mean that we can start to make astrophysically important statements about the physics of neutron stars based on observed upper limits to their gravitational luminosity. Here we consider statements we can already make about a selection of known radio pulsars, based on data from the LIGO and GEO600 detectors, and look forward to what could be learned from the first detections

    A generalised Measurement Equation and van Cittert-Zernike theorem for wide-field radio astronomical interferometry

    Full text link
    We derive a generalised van Cittert-Zernike (vC-Z) theorem for radio astronomy that is valid for partially polarized sources over an arbitrarily wide field-of-view (FoV). The classical vC-Z theorem is the theoretical foundation of radio astronomical interferometry, and its application is the basis of interferometric imaging. Existing generalised vC-Z theorems in radio astronomy assume, however, either paraxiality (narrow FoV) or scalar (unpolarized) sources. Our theorem uses neither of these assumptions, which are seldom fulfilled in practice in radio astronomy, and treats the full electromagnetic field. To handle wide, partially polarized fields, we extend the two-dimensional electric field (Jones vector) formalism of the standard "Measurement Equation" of radio astronomical interferometry to the full three-dimensional formalism developed in optical coherence theory. The resulting vC-Z theorem enables all-sky imaging in a single telescope pointing, and imaging using not only standard dual-polarized interferometers (that measure 2-D electric fields), but also electric tripoles and electromagnetic vector-sensor interferometers. We show that the standard 2-D Measurement Equation is easily obtained from our formalism in the case of dual-polarized antenna element interferometers. We find, however, that such dual-polarized interferometers can have polarimetric aberrations at the edges of the FoV that are often correctable. Our theorem is particularly relevant to proposed and recently developed wide FoV interferometers such as LOFAR and SKA, for which direction-dependent effects will be important.Comment: To be published in MNRA

    Managing Research Data: Gravitational Waves

    Get PDF
    The project which led to this report was funded by JISC in 2010–2011 as part of its ‘Managing Research Data’ programme, to examine the way in which Big Science data is managed, and produce any recommendations which may be appropriate. Big science data is different: it comes in large volumes, and it is shared and exploited in ways which may differ from other disciplines. This project has explored these differences using as a case-study Gravitational Wave data generated by the LSC, and has produced recommendations intended to be useful variously to JISC, the funding council (STFC) and the LSC community. In Sect. 1 we define what we mean by ‘big science’, describe the overall data culture there, laying stress on how it necessarily or contingently differs from other disciplines. In Sect. 2 we discuss the benefits of a formal data-preservation strategy, and the cases for open data and for well-preserved data that follow from that. This leads to our recommendations that, in essence, funders should adopt rather light-touch prescriptions regarding data preservation planning: normal data management practice, in the areas under study, corresponds to notably good practice in most other areas, so that the only change we suggest is to make this planning more formal, which makes it more easily auditable, and more amenable to constructive criticism. In Sect. 3 we briefly discuss the LIGO data management plan, and pull together whatever information is available on the estimation of digital preservation costs. The report is informed, throughout, by the OAIS reference model for an open archive. Some of the report’s findings and conclusions were summarised in [1]. See the document history on page 37

    A fast search strategy for gravitational waves from low-mass X-ray binaries

    Full text link
    We present a new type of search strategy designed specifically to find continuously emitting gravitational wave sources in known binary systems based on the incoherent sum of frequency modulated binary signal sidebands. The search pipeline can be divided into three stages: the first is a wide bandwidth, F-statistic search demodulated for sky position. This is followed by a fast second stage in which areas in frequency space are identified as signal candidates through the frequency domain convolution of the F-statistic with an approximate signal template. For this second stage only precise information on the orbit period and approximate information on the orbital semi-major axis are required apriori. For the final stage we propose a fully coherent Markov chain monte carlo based follow up search on the frequency subspace defined by the candidates identified by the second stage. This search is particularly suited to the low-mass X-ray binaries, for which orbital period and sky position are typically well known and additional orbital parameters and neutron star spin frequency are not. We note that for the accreting X-ray millisecond pulsars, for which spin frequency and orbital parameters are well known, the second stage can be omitted and the fully coherent search stage can be performed. We describe the search pipeline with respect to its application to a simplified phase model and derive the corresponding sensitivity of the search.Comment: 13 pages, 3 figures, to appear in the GWDAW 11 conference proceeding

    A new code for parameter estimation in searches for gravitational waves from known pulsars

    Get PDF
    We describe the consistency testing of a new code for gravitational wave signal parameter estimation in known pulsar searches. The code uses an implementation of nested sampling to explore the likelihood volume. Using fake signals and simulated noise we compare this to a previous code that calculated the signal parameter posterior distributions on both a grid and using a crude Markov chain Monte Carlo (MCMC) method. We define a new parameterisation of two orientation angles of neutron stars used in the signal model (the initial phase and polarisation angle), which breaks a degeneracy between them and allows more efficient exploration of those parameters. Finally, we briefly describe potential areas for further study and the uses of this code in the future.Comment: Accepted for proceedings of Amaldi 9 meetin

    Searching for gravitational waves from the Crab pulsar - the problem of timing noise

    Get PDF
    Of the current known pulsars, the Crab pulsar (B0531+21) is one of the most promising sources of gravitational waves. The relatively large timing noise of the Crab causes its phase evolution to depart from a simple spin-down model. This effect needs to be taken in to account when performing time domain searches for the Crab pulsar in order to avoid severely degrading the search efficiency. The Jodrell Bank Crab pulsar ephemeris is examined to see if it can be used for tracking the phase evolution of any gravitational wave signal from the pulsar, and we present a method of heterodyning the data that takes account of the phase wander. The possibility of obtaining physical information about the pulsar from comparisons of the electromagnetically and a gravitationally observed timing noise is discussed. Finally, additional problems caused by pulsar glitches are discussed.Comment: 5 pages, 1 figure, Proceedings of the 5th Amaldi Conference on Gravitational Waves, Pisa, Italy, 6-11 July 200

    An Evidence Based Time-Frequency Search Method for Gravitational Waves from Pulsar Glitches

    Full text link
    We review and expand on a Bayesian model selection technique for the detection of gravitational waves from neutron star ring-downs associated with pulsar glitches. The algorithm works with power spectral densities constructed from overlapping time segments of gravitational wave data. Consequently, the original approach was at risk of falsely identifying multiple signals where only one signal was present in the data. We introduce an extension to the algorithm which uses posterior information on the frequency content of detected signals to cluster events together. The requirement that we have just one detection per signal is now met with the additional bonus that the belief in the presence of a signal is boosted by incorporating information from adjacent time segments.Comment: 6 pages, 4 figures, submitted to AMALDI 7 proceeding

    An Evidence Based Search Method For Gravitational Waves From Neutron Star Ring-downs

    Get PDF
    The excitation of quadrupolar quasi-normal modes in a neutron star leads to the emission of a short, distinctive, burst of gravitational radiation in the form of a decaying sinusoid or `ring-down'. We present a Bayesian analysis method which incorporates relevant prior information about the source and known instrumental artifacts to conduct a robust search for the gravitational wave emission associated with pulsar glitches and soft γ\gamma-ray repeater flares. Instrumental transients are modelled as sine-Gaussian and their evidence, or marginal likelihood, is compared with that of Gaussian white noise and ring-downs via the `odds-ratio'. Tests using simulated data with a noise spectral density similar to the LIGO interferometer around 1 kHz yield 50% detection efficiency and 1% false alarm probability for ring-down signals with signal-to-noise ratio ρ=5.2\rho=5.2. For a source at 15 kpc this requires an energy of 1.3\times 10^{-5}M_{\astrosun}c^2 to be emitted as gravitational waves.Comment: 14 pages, 12 figure

    Optimal time-domain combination of the two calibrated output quadratures of GEO 600

    Get PDF
    GEO 600 is an interferometric gravitational wave detector with a 600 m arm-length and which uses a dual-recycled optical configuration to give enhanced sensitivity over certain frequencies in the detection band. Due to the dual-recycling, GEO 600 has two main output signals, both of which potentially contain gravitational wave signals. These two outputs are calibrated to strain using a time-domain method. In order to simplify the analysis of the GEO 600 data set, it is desirable to combine these two calibrated outputs to form a single strain signal that has optimal signal-to-noise ratio across the detection band. This paper describes a time-domain method for doing this combination. The method presented is similar to one developed for optimally combining the outputs of two colocated gravitational wave detectors. In the scheme presented in this paper, some simplifications are made to allow its implementation using time-domain methods
    corecore