11 research outputs found

    Evaluating a reinforcement learning algorithm with a general intelligence test

    Full text link
    In this paper we apply the recent notion of anytime universal intelligence tests to the evaluation of a popular reinforcement learning algorithm, Q-learning. We show that a general approach to intelligence evaluation of AI algorithms is feasible. This top-down (theory-derived) approach is based on a generation of environments under a Solomonoff universal distribution instead of using a pre-defined set of specific tasks, such as mazes, problem repositories, etc. This first application of a general intelligence test to a reinforcement learning algorithm brings us to the issue of task-specific vs. general AI agents. This, in turn, suggests new avenues for AI agent evaluation and AI competitions, and also conveys some further insights about the performance of specific algorithms. © 2011 Springer-Verlag.We are grateful for the funding from the Spanish MEC and MICINN for projects TIN2009-06078-E/TIN, Consolider-Ingenio CSD2007-00022 and TIN2010-21062-C02, for MEC FPU grant AP2006-02323, and Generalitat Valenciana for Prometeo/2008/051.Insa Cabrera, J.; Dowe, DL.; Hernández Orallo, J. (2011). Evaluating a reinforcement learning algorithm with a general intelligence test. En Advances in Artificial Intelligence. Springer Verlag (Germany). 7023:1-11. https://doi.org/10.1007/978-3-642-25274-7_1S1117023Dowe, D.L., Hajek, A.R.: A non-behavioural, computational extension to the Turing Test. In: Intl. Conf. on Computational Intelligence & multimedia applications (ICCIMA 1998), Gippsland, Australia, pp. 101–106 (1998)Genesereth, M., Love, N., Pell, B.: General game playing: Overview of the AAAI competition. AI Magazine 26(2), 62 (2005)Hernández-Orallo, J.: Beyond the Turing Test. J. Logic, Language & Information 9(4), 447–466 (2000)Hernández-Orallo, J.: A (hopefully) non-biased universal environment class for measuring intelligence of biological and artificial systems. In: Hutter, M., et al. (eds.) 3rd Intl. Conf. on Artificial General Intelligence, Atlantis, pp. 182–183 (2010)Hernández-Orallo, J.: On evaluating agent performance in a fixed period of time. In: Hutter, M., et al. (eds.) 3rd Intl. Conf. on Artificial General Intelligence, pp. 25–30. Atlantis Press (2010)Hernández-Orallo, J., Dowe, D.L.: Measuring universal intelligence: Towards an anytime intelligence test. Artificial Intelligence 174(18), 1508–1539 (2010)Legg, S., Hutter, M.: A universal measure of intelligence for artificial agents. Intl. Joint Conf. on Artificial Intelligence, IJCAI 19, 1509 (2005)Legg, S., Hutter, M.: Universal intelligence: A definition of machine intelligence. Minds and Machines 17(4), 391–444 (2007)Levin, L.A.: Universal sequential search problems. Problems of Information Transmission 9(3), 265–266 (1973)Li, M., Vitányi, P.: An introduction to Kolmogorov complexity and its applications, 3rd edn. Springer-Verlag New York, Inc. (2008)Sanghi, P., Dowe, D.L.: A computer program capable of passing IQ tests. In: Proc. 4th ICCS International Conference on Cognitive Science (ICCS 2003), Sydney, Australia, pp. 570–575 (2003)Solomonoff, R.J.: A formal theory of inductive inference. Part I. Information and Control 7(1), 1–22 (1964)Strehl, A.L., Li, L., Wiewiora, E., Langford, J., Littman, M.L.: PAC model-free reinforcement learning. In: Proc. of the 23rd Intl. Conf. on Machine Learning, ICML 2006, New York, pp. 881–888 (2006)Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. The MIT press (1998)Turing, A.M.: Computing machinery and intelligence. Mind 59, 433–460 (1950)Veness, J., Ng, K.S., Hutter, M., Silver, D.: Reinforcement learning via AIXI approximation. In: Proc. 24th Conf. on Artificial Intelligence (AAAI 2010), pp. 605–611 (2010)Watkins, C.J.C.H., Dayan, P.: Q-learning. Machine learning 8(3), 279–292 (1992)Weyns, D., Parunak, H.V.D., Michel, F., Holvoet, T., Ferber, J.: Environments for multiagent systems state-of-the-art and research challenges. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2004. LNCS (LNAI), vol. 3374, pp. 1–47. Springer, Heidelberg (2005)Whiteson, S., Tanner, B., White, A.: The Reinforcement Learning Competitions. The AI magazine 31(2), 81–94 (2010)Woergoetter, F., Porr, B.: Reinforcement learning. Scholarpedia 3(3), 1448 (2008)Zatuchna, Z., Bagnall, A.: Learning mazes with aliasing states: An LCS algorithm with associative perception. Adaptive Behavior 17(1), 28–57 (2009

    A Novel Task for the Investigation of Action Acquisition

    Get PDF
    We present a behavioural task designed for the investigation of how novel instrumental actions are discovered and learnt. The task consists of free movement with a manipulandum, during which the full range of possible movements can be explored by the participant and recorded. A subset of these movements, the ‘target’, is set to trigger a reinforcing signal. The task is to discover what movements of the manipulandum evoke the reinforcement signal. Targets can be defined in spatial, temporal, or kinematic terms, can be a combination of these aspects, or can represent the concatenation of actions into a larger gesture. The task allows the study of how the specific elements of behaviour which cause the reinforcing signal are identified, refined and stored by the participant. The task provides a paradigm where the exploratory motive drives learning and as such we view it as in the tradition of Thorndike [1]. Most importantly it allows for repeated measures, since when a novel action is acquired the criterion for triggering reinforcement can be changed requiring a new action to be discovered. Here, we present data using both humans and rats as subjects, showing that our task is easily scalable in difficulty, adaptable across species, and produces a rich set of behavioural measures offering new and valuable insight into the action learning process

    Visual primitives: Local, condensed, semantically rich visual descriptors and their applications in robotics.

    Full text link
    We present a novel representation of visual information, based on local symbolic descriptors, that we call visual primitives. These primitives: (1) combine different visual modalities, (2) associate semantic to local scene information, and (3) reduce the bandwidth while increasing the predictability of the information exchanged across the system. This representation leads to the concept of early cognitive vision that we define as an intermediate level between dense, signal-based early vision and high-level cognitive vision. The framework's potential is demonstrated in several applications, in particular in the area of robotics and humanoid robotics, which are briefly outlined
    corecore