4 research outputs found

    The gauge theory of dislocations: static solutions of screw and edge dislocations

    Full text link
    We investigate the T(3)-gauge theory of static dislocations in continuous solids. We use the most general linear constitutive relations bilinear in the elastic distortion tensor and dislocation density tensor for the force and pseudomoment stresses of an isotropic solid. The constitutive relations contain six material parameters. In this theory both the force and pseudomoment stresses are asymmetric. The theory possesses four characteristic lengths l1, l2, l3 and l4 which are given explicitely. We first derive the three-dimensional Green tensor of the master equation for the force stresses in the translational gauge theory of dislocations. We then investigate the situation of generalized plane strain (anti-plane strain and plane strain). Using the stress function method, we find modified stress functions for screw and edge dislocations. The solution of the screw dislocation is given in terms of one independent length l1=l4. For the problem of an edge dislocation, only two characteristic lengths l2 and l3 arise with one of them being the same l2=l1 as for the screw dislocation. Thus, this theory possesses only two independent lengths for generalized plane strain. If the two lengths l2 and l3 of an edge dislocation are equal, we obtain an edge dislocation which is the gauge theoretical version of a modified Volterra edge dislocation. In the case of symmetric stresses we recover well known results obtained earlier.Comment: 33 pages, 17 figure

    Beeinflussung von Pflanzen und pflanzlichen Geweben

    No full text
    corecore