11 research outputs found
Panta Rhei benchmark dataset: socio-hydrological data of paired events of floods and droughts
As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management and climate adaptation. However, there is currently a lack of comprehensive, empirical data about the processes, interactions and feedbacks in complex human-water systems leading to flood and drought impacts. Here we present a benchmark dataset containing socio-hydrological data of paired events, i.e., two floods or two droughts that occurred in the same area. The 45 paired events occurred in 42 different study areas and cover a wide range of socio-economic and hydro-climatic conditions. The dataset is unique in covering both floods and droughts, in the number of cases assessed, and in the quantity of socio-hydrological data. The benchmark dataset comprises: 1) detailed review style reports about the events and key processes between the two events of a pair; 2) the key data table containing variables that assess the indicators which characterise management shortcomings, hazard, exposure, vulnerability and impacts of all events; 3) a table of the indicators-of-change that indicate the differences between the first and second event of a pair. The advantages of the dataset are that it enables comparative analyses across all the paired events based on the indicators-of-change and allows for detailed context- and location-specific assessments based on the extensive data and reports of the individual study areas. The dataset can be used by the scientific community for exploratory data analyses e.g. focused on causal links between risk management, changes in hazard, exposure and vulnerability and flood or drought impacts. The data can also be used for the development, calibration and validation of socio-hydrological models. The dataset is available to the public through the GFZ Data Services (Kreibich et al. 2023, link for review: https://dataservices.gfz-potsdam.de/panmetaworks/review/923c14519deb04f83815ce108b48dd2581d57b90ce069bec9c948361028b8c85/).</p
Urban drought
Drought is recognized as one of the most complex natural hazards that have a large negative impact on society, economic sectors and the environment. Drought events affect freshwater resources and can become a great threat to urban water supply systems. According to climate change projections with an increase of air temperature and duration of dry periods, cities may experience a serious water shortage in the future that can limit sustainable urban development. Water-related consequences in urban areas can concern various socio-economic sectors as well as urban ecosystems. This paper focuses on drought in urban areas as an event of below-average natural water availability that can result in difficulties in meeting the water needs of socio-economic sectors and ecosystems particularly vulnerable to drought. Drought vulnerable sectors were identified within the local context of the City of Wroclaw area. Long-term analyses of meteorological and hydrological indicators were performed in order to estimate the drought hazard in Wrocław. A combination of water shortage hazard and the vulnerability of water users were the basis to assess local drought risks. Reducing the drought risk requires coherent actions from both city and water managers. The paper presents a set of recommendable measures to avoid potential water shortages and to cope with impacts of drought in the Wroclaw area
Urban drought
Drought is recognized as one of the most complex natural hazards that have a large negative impact on society, economic sectors and the environment. Drought events affect freshwater resources and can become a great threat to urban water supply systems. According to climate change projections with an increase of air temperature and duration of dry periods, cities may experience a serious water shortage in the future that can limit sustainable urban development. Water-related consequences in urban areas can concern various socio-economic sectors as well as urban ecosystems. This paper focuses on drought in urban areas as an event of below-average natural water availability that can result in difficulties in meeting the water needs of socio-economic sectors and ecosystems particularly vulnerable to drought. Drought vulnerable sectors were identified within the local context of the City of Wroclaw area. Long-term analyses of meteorological and hydrological indicators were performed in order to estimate the drought hazard in Wrocław. A combination of water shortage hazard and the vulnerability of water users were the basis to assess local drought risks. Reducing the drought risk requires coherent actions from both city and water managers. The paper presents a set of recommendable measures to avoid potential water shortages and to cope with impacts of drought in the Wroclaw area
A Novel Method of Design Flood Hydrographs Estimation for Flood Hazard Mapping
Flood hazard mapping requires knowledge of peak flow as well as flood wave volume and shape, usually represented as a design flood hydrograph (DFH). Statistical approaches for DFH development include nonparametric and parametric methods. The former are developed from long-term flow observations and are thus related to the physio-hydro-climatological catchment properties, but not applicable for ungauged catchments. The alternative parametric DFH can be estimated for any river cross-section, but its links with catchment characteristics are limited. The goal of this study was to introduce a novel hybrid approach for DFH estimation, where the parametric DFH is estimated from the selected properties of the nonparametric DFH (hydrograph width at the levels of 50% and 75% of the peak flow and skewness coefficient) that can be related to the catchment characteristics. The model that offers effective parameter estimation and best correspondence to the reference observation-based hydrograph was selected from among Gamma distribution, Strupczewski and Baptista candidates. The method was validated for 34 catchments of the upper Vistula River and Middle Odra water regions (Poland) based on data from the 1964–2010 period. The Baptista method was found to provide the best model for hybrid DFH construction according to the applied quality measures
Application of spatial weather generator for the assessment of climate change impacts on a river runoff
In this study, the impacts of climate change on streamflow are investigated. The ensemble of outputs from three different Global Circulation Models models: GISS, CCCM, GFDL developed for the emission scenario A1B were analyzed to infer projected changes in climatological conditions for the region of the Upper and Middle Odra basin. Obtaining hydrological scenarios of future changes for the scale of subcatchment required simulating short-term and fine scaled weather patterns for this area. SWGEN model (Spatial Weather GENerator) was applied to downscale projected changes of climatological conditions to the ones required by hydrological model temporal and spatial resolution. Daily time series of solar radiation, temperature and precipitation were generated for the reference period 1981-2000 and for the time horizon 2030 and 2050. The generated data from SWGEN model were integrated in the hydrological model NAM to simulate streamflow under changed conditions with daily time step. The results show considerable changes in annual and seasonal runoff daily distributions for selected study catchment in the future time horizons of 2030 and 2050.12
Recommended from our members
The challenge of unprecedented floods and droughts in risk management.
Risk management has reduced vulnerability to floods and droughts globally1,2, yet their impacts are still increasing3. An improved understanding of the causes of changing impacts is therefore needed, but has been hampered by a lack of empirical data4,5. On the basis of a global dataset of 45 pairs of events that occurred within the same area, we show that risk management generally reduces the impacts of floods and droughts but faces difficulties in reducing the impacts of unprecedented events of a magnitude not previously experienced. If the second event was much more hazardous than the first, its impact was almost always higher. This is because management was not designed to deal with such extreme events: for example, they exceeded the design levels of levees and reservoirs. In two success stories, the impact of the second, more hazardous, event was lower, as a result of improved risk management governance and high investment in integrated management. The observed difficulty of managing unprecedented events is alarming, given that more extreme hydrological events are projected owing to climate change3
The challenge of unprecedented floods and droughts in risk management
International audienceAbstract Risk management has reduced vulnerability to floods and droughts globally 1,2 , yet their impacts are still increasing 3 . An improved understanding of the causes of changing impacts is therefore needed, but has been hampered by a lack of empirical data 4,5 . On the basis of a global dataset of 45 pairs of events that occurred within the same area, we show that risk management generally reduces the impacts of floods and droughts but faces difficulties in reducing the impacts of unprecedented events of a magnitude not previously experienced. If the second event was much more hazardous than the first, its impact was almost always higher. This is because management was not designed to deal with such extreme events: for example, they exceeded the design levels of levees and reservoirs. In two success stories, the impact of the second, more hazardous, event was lower, as a result of improved risk management governance and high investment in integrated management. The observed difficulty of managing unprecedented events is alarming, given that more extreme hydrological events are projected owing to climate change 3
The challenge of unprecedented floods and droughts in risk management
Risk management has reduced vulnerability to floods and droughts globally1,2, yet their impacts are still increasing3. An improved understanding of the causes of changing impacts is therefore needed, but has been hampered by a lack of empirical data4,5. On the basis of a global dataset of 45 pairs of events that occurred within the same area, we show that risk management generally reduces the impacts of floods and droughts but faces difficulties in reducing the impacts of unprecedented events of a magnitude not previously experienced. If the second event was much more hazardous than the first, its impact was almost always higher. This is because management was not designed to deal with such extreme events: for example, they exceeded the design levels of levees and reservoirs. In two success stories, the impact of the second, more hazardous, event was lower, as a result of improved risk management governance and high investment in integrated management. The observed difficulty of managing unprecedented events is alarming, given that more extreme hydrological events are projected owing to climate change3
Panta Rhei benchmark dataset: socio-hydrological data of paired events of floods and droughts
As the negative impacts of hydrological extremes increase in large parts of the world, a better understanding of the drivers of change in risk and impacts is essential for effective flood and drought risk management and climate adaptation. However, there is a lack of comprehensive, empirical data about the processes, interactions and feedbacks in complex human-water systems leading to flood and drought impacts. To fill this gap, we present an IAHS Panta Rhei benchmark dataset containing socio-hydrological data of paired events, i.e. two floods or two droughts that occurred in the same area (Kreibich et al. 2017, 2019). The contained 45 paired events occurred in 42 different study areas (in three study areas we have data on two paired events), which cover different socioeconomic and hydroclimatic contexts across all continents. The dataset is unique in covering floods and droughts, in the number of cases assessed and in the amount of qualitative and quantitative socio-hydrological data contained. References to the data sources are provided in 2022-002_Kreibich-et-al_Key_data_table.xlsx where possible. Based on templates, we collected detailed, review-style reports describing the event characteristics and processes in the case study areas, as well as various semi-quantitative data, categorised into management, hazard, exposure, vulnerability and impacts. Sources of the data were classified as follows: scientific study (peer-reviewed paper and PhD thesis), report (by governments, administrations, NGOs, research organisations, projects), own analysis by authors, based on a database (e.g. official statistics, monitoring data such as weather, discharge data, etc.), newspaper article, and expert judgement. The campaign to collect the information and data on paired events started at the EGU General Assembly in April 2019 in Vienna and was continued with talks promoting the paired event data collection at various conferences. Communication with the Panta Rhei community and other flood and drought experts identified through snowballing techniques was important. Thus, data on paired events were provided by professionals with excellent local knowledge of the events and risk management practices