249 research outputs found

    Spray performance and steadiness of an effervescent atomizer and an air-core-liquid-ring atomizer for application in spray drying processes of highly concentrated feeds

    Get PDF
    Atomization for spray drying of high viscous feed liquids is still a challenging task. For this reason, we investigated the potential of two internal mixing pneumatic atomizers, namely an effervescent atomizer (EA) and an Air-Core-Liquid-Ring (ACLR) atomizer. Both atomizers are characterized by a two-phase flow in the exit orifice. While this can be either a two-phase plug or annular flow in case of the EA geometry, the ACLR atomizer enforces annular flow conditions. In this study, spraying experiments were conducted at liquid viscosities between 0.12 and 0.69 Pa∙s. The investigations were performed at a constant liquid flow rate of 20 L/h and gas pressures from 0.3 to 0.9 MPa. Besides the commonly used correlation between Gas-to-Liquid-Ratio (GLR) and time-averaged Sauter mean diameters ((SMD) ̅), we analyzed in-depth the time dependent fluctuation of SMDs, as steady atomization is crucial for spray drying applications. We can conclude that due to strong fluctuations of the SMDs the EA is not suitable for the aimed application in spray drying of high viscous feed liquids. In contrast, the ACLR atomizer is a very promising nozzle for spray drying applications as it delivers much better performance and steadiness also at high liquid viscosities

    Laminar analysis of the slow wave activity in the somatosensory cortex of anesthetized rats.

    Get PDF
    Rhythmic slow waves characterize brain electrical activity during natural deep sleep and under anesthesia, reflecting the synchronous membrane potential fluctuations of neurons in the thalamocortical network. Strong evidence indicates that the neocortex plays an important role in the generation of slow wave activity (SWA), however, contributions of individual cortical layers to the SWA generation are still unclear. The anatomically correct laminar profiles of SWA were revealed under ketamine/xylazine anesthesia, with combined local field potential recordings, multiple-unit activity (MUA), current source density (CSD) and time-frequency analyses precisely co-registered with histology. The up-state related negative field potential wave showed the largest amplitude in layer IV, the CSD was largest in layers I and III, while MUA was maximal in layer V, suggesting spatially dissociated firing and synaptic/transmembrane processes in the rat somatosensory cortex. Up-state related firing could start in virtually any layers (III-VI) of the cortex, but were most frequently initiated in layer V. However, in a subset of experiments, layer IV was considerably active in initiating up-state related MUA even in the absence of somatosensory stimulation. Somatosensory stimulation further strengthened up-state initiation in layer IV. Our results confirm that cortical layer V firing may have a major contribution to the up-state generation of ketamine/xylazine-induced SWA, however, thalamic influence through the thalamorecipient layer IV can also play an initiating role, even in the absence of sensory stimulation. This article is protected by copyright. All rights reserved

    Untersuchungen zur Zerstäubung von höherviskosen Modelllebensmitteln mittels innenmischender pneumatischer Ringströmungsdüsen

    Get PDF
    Die Sprühtrocknung ist ein weit verbreitetes Verfahren zur Überführung von Lebens-mittelflüssigkeiten in einen festen, pulverförmigen Zustand. Da Trocknungsprozesse zu den energieintensivsten Prozessen der Lebensmittelverarbeitung zählen, gibt es hier ein hohes Energieeinsparpotenzial. Eine Möglichkeit zur Reduktion des Gesamtenergiebedarfs des Sprühtrocknungsprozesses ist die Aufkonzentrierung der verwendeten Konzentrate zu höheren Trockenmassen mittels energiesparender, vorgeschalteter Prozesse. Allerdings steigt mit steigender Trockenmasse auch die Viskosität der zu zerstäubenden Flüssigkeit, was die Zerteilung in feine Tropfen grundsätzlich erschwert. Eine Möglichkeit für die Zerstäubung höherviskoser Flüssigkeiten bei relativ geringem Energieeintrag stellen innenmischende pneumatische Zerstäuber dar, bei denen sich im Düsenauslasskanal eine stabile Ringströmung einstellt. Diese Erkenntnis resultiert unter anderem aus Arbeiten mit einem optisch zugänglichen Effervescent Atomizer [1]. Auf dieser Grundlage wurde ein neues Zerstäuberdesign vorgeschlagen, welches bei geringem Gaseinsatz über einen großen Viskositätsbereich gezielt eine Ringströmung im Düsenauslasskanal erzeugen kann. Bei diesem sogenannten Air-Core-Liquid-Ring Zerstäuber (ACLR) wird das Zerstäubungsgas kurz vor dem Düsenauslasskanal mittels einer Kapillaren zentral in den Flüssigkeitsstrom eingebracht. Dadurch wird gezielt eine Gaskernbildung erzwungen. In dieser Arbeit wurde der ACLR-Zerstäuber hinsichtlich der Zerstäubungseffizienz und –stetigkeit untersucht und mit dem zuvor genannten Effervescent Atomizer verglichen. Der ACLR-Zerstäuber erzielt dabei vergleichbare mittlere Tropfengrößen bei deutlich geringeren Fluktuationen des mittleren Sprühtropfendurchmessers, insbesondere bei gesteigerten Flüssigkeitsviskositäten. Diese geringe Fluktuation ist entscheidend für den Einsatz im Sprühtrocknungsbereich, da hier prozessbedingt eine enge Tropfengrößenverteilung erforderlich ist

    Large-scale recording of thalamocortical circuits: in vivo electrophysiology with the two-dimensional electronic depth control silicon probe.

    Get PDF
    Recording simultaneous activity of a large number of neurons in distributed neuronal networks is crucial to understand higher order brain functions. Here, we demonstrate the in vivo performance of a recently developed electrophysiological recording system comprising a two-dimensional, multi-shank, high-density silicon probe with integrated CMOS electronics. The system implements the concept of electronic depth control (EDC), which enables the electronic selection of a limited number of recording sites on each of the probe shafts. This innovative feature of the system permits simultaneous recording of local field potentials (LFP), and single- and multiple-unit activities (SUA and MUA, respectively) from multiple brain sites with high quality and without the actual physical movement of the probe. To evaluate the in vivo recording capabilities of the EDC probe, we recorded LFP, MUA and SUA in acute experiments from cortical and thalamic brain areas of anesthetized rats and mice. The advantages of large-scale recording with the EDC probe are illustrated by investigating the spatiotemporal dynamics of pharmacologically induced thalamocortical slow wave activity in rats, by comparing the firing and burst properties of neurons located in various thalamic nuclei and by the two-dimensional tonotopic mapping of the auditory thalamus. In mice, spatial distribution of thalamic responses to optogenetic stimulation of the neocortex was examined. Utilizing the benefits of the EDC system may result in a higher yield of useful data from a single experiment compared to traditional passive multielectrode arrays, and thus in the reduction of animals needed for a research study

    Air-Core–Liquid-Ring (ACLR) Atomization Part II: Influence of Process Parameters on the Stability of Internal Liquid Film Thickness and Resulting Spray Droplet Sizes

    Get PDF
    Air-core–liquid-ring (ACLR) atomization presents a specific type of internal mixing pneumatic atomization. It can be used for disintegration of high viscous feed liquids into small droplets at relatively low gas consumptions. However, the specific principle of ACLR atomization is still under research and no guidelines for process and atomizer design are available. Regarding literature on pre-filming atomizers, it can be hypothesized for ACLR atomization that the liquid film thickness inside the exit orifice of the atomizer, as well as the resulting spray droplet sizes decrease with increasing air-to-liquid ratio (ALR) and decreasing feed viscosity. In this study, the time dependent liquid film thickness inside the exit orifice of the atomizer was predicted by means of computational fluid dynamics (CFD) analysis. Results were compared to high speed video images and correlated to measured spray droplet sizes. In conclusion, the hypothesis could be validated by simulation and experimental data, however, at high viscosity and low ALR, periodic gas core breakups were detected in optical measurements. These breakups could not be predicted in CFD simulations, as the simplification of an incompressible gas phase was applied in order to reduce computational costs and time. Nevertheless, the presented methods show good potential for improvement of atomizer geometry and process design as well as for further investigation of the ACLR atomization principle

    Home Defence and the Sandys Defence White Paper, 1957

    Get PDF
    Long understood as the key document in Britain's Cold War history, the Duncan Sandys Defence White Paper of 1957 nevertheless has a largely forgotten context: home defence. This article argues that understanding this context allows important new conclusions to be drawn concerning the drafting, presentation and the reception of the document and the deterrent strategy it expounded. It argues that the Paper failed to establish a new doctrine for civil defence which reconciled the policy with the wider deterrent strategy. In doing this, the Paper presented a muddled policy to the public: one which failed to justify the reductions in civil defence provision but which stressed the destructive power of thermonuclear weapons. This had the effect of encouraging the critics of the government's nuclear strategy to flag up the absence of adequate civil defence measures and highlight the 'admission' that there was no defence against the hydrogen bomb
    • …
    corecore