469 research outputs found

    Transitions in the morphological features, habitat use, and diet of young-of-the-year goosefish (Lophius americanus)

    Get PDF
    This study was designed to improve our understanding of transitions in the early life history and the distribution, habitat use, and diets for young-of-the-year (YOY) goosefish (Lophius americanus) and, as a result, their role in northeastern U.S. continental shelf ecosystems. Pelagic juveniles (>12 to ca. 50 mm total length [TL]) were distributed over most portions of the continental shelf in the Middle Atlantic Bight, Georges Bank, and into the Gulf of Maine. Most individuals settled by 50−85 mm TL and reached approximately 60−120 mm TL by one year of age. Pelagic YOY fed on chaetognaths, hyperiid amphipods, calanoid copepods, and ostracods, and benthic YOY had a varied diet of fishes and benthic crustaceans. Goosefish are widely scattered on the continental shelf in the Middle Atlantic Bight during their early life history and once settled, are habitat generalists, and thus play a role in many continental shelf habi

    Single-shot implementation of dispersion-scan for the characterization of ultrashort laser pulses

    Full text link
    We demonstrate a novel, single-shot ultrafast diagnostic, based on the dispersion-scan (d-scan) technique. In this implementation, rather than scanning wedges to vary the dispersion as in standard d-scan, the pulse to be measured experiences a spatially varying amount of dispersion in a Littrow prism. The resulting beam is then imaged into a second-harmonic generation crystal and an imaging spectrometer is used to measure the two-dimensional trace, which is analyzed using the d-scan retrieval algorithm. We compare the single-shot implementation with the standard d-scan for the measurement of sub-3.5-fs pulses from a hollow core fiber pulse compressor. We show that the retrieval algorithm used to extract amplitude and phase of the pulse provides comparable results, proving the validity of the new single-shot implementation down to near single-cycle durations.Comment: 6 pages, 4 figure

    Self-referenced characterization of space-time couplings in near single-cycle laser pulses

    Get PDF
    We report on the characterization of space-time couplings in high energy sub-2-cycle 770nm laser pulses using a self-referencing single-shot method. Using spatially-encoded arrangement filter-based spectral phase interferometry for direct electric field reconstruction (SEA-F-SPIDER) we characterize few-cycle pulses with a wave-front rotation of 2.8x?10^11 rev/sec (1.38 mrad per half-cycle) and pulses with pulse front tilts ranging from to -0.33 fs/um to -3.03 fs/um.Comment: 6 pages, 6 figure

    Analysis of a model with a common source of CP violation

    Full text link
    We work in a model where all CP violating phenomena have a common source. CP is spontaneously broken at a large scale VV through the phase of a complex singlet scalar. An additional SU(2)LSU(2)_L singlet vector-like down-type quark relates this high scale CP violation to low energy. We quantitatively analyze this model in the quark sector. We obtain the numerical values of the parameters of the Lagrangian in the quark sector for a specific ansatz of the 4×44\times4 down-type quark mass matrix where the weak phase is generated minimally. ZbˉbZ \bar b b vertex will modify in presence of the extra vector-like down-type quark. From the experimental lower bound of the partial decay width ZbˉbZ\to \bar b b we find out the lower bound of the additional down-type quark mass. Tree level flavor changing neutral current appears in this model due to the presence of the extra vector-like down-type quark. We give the range of values of the mass splitting ΔmBq\Delta m_{B_q} in Bq0Bˉq0B^0_q-{\bar B}^0_q system using SM box, ZZ mediating tree level and ZZ mediating one loop diagrams together for both q=d,sq=d, s. We find out the analytical expression for Γ12q\Gamma_{12}^q in this model from standard box, ZZ and Higgs mediated penguin diagrams for Bq0Bˉq0B^0_q-{\bar B}^0_q system, q=d,sq=d,s. From this we numerically evaluate the decay width difference ΔΓBq/ΓBq|\Delta\Gamma_{B_q}/\Gamma_{B_q}|. We also find out the numerical values of the CP asymmetry parameters aJa_J and aπa_\pi for the decays Bd0J/ψKsB^0_d\to J/\psi K_s and Bd0π+πB^0_d\to \pi^+ \pi^- respectively. We get the lower bound of the scale VV through the upper bound of the strong CP phase.Comment: 20 pages, no figures New materials and references have been added. Text has been modified. To be appear in J.Phys.

    Low-Symmetry Rhombohedral GeTe Thermoelectrics

    Get PDF
    High-symmetry thermoelectric materials usually have the advantage of very high band degeneracy, while low-symmetry thermoelectrics have the advantage of very low lattice thermal conductivity. If the symmetry breaking of band degeneracy is small, both effects may be realized simultaneously. Here we demonstrate this principle in rhombohedral GeTe alloys, having a slightly reduced symmetry from its cubic structure, to realize a record figure of merit (zT ∼ 2.4) at 600 K. This is enabled by the control of rhombohedral distortion in crystal structure for engineering the split low-symmetry bands to be converged and the resultant compositional complexity for simultaneously reducing the lattice thermal conductivity. Device ZT as high as 1.3 in the rhombohedral phase and 1.5 over the entire working temperature range of GeTe alloys make this material the most efficient thermoelectric to date. This work paves the way for exploring low-symmetry materials as efficient thermoelectrics. Thermoelectric materials enable a heat flow to be directly converted to a flow of charge carriers for generating electricity. The crystal structure symmetry is one of the most fundamental parameters determining the properties of a crystalline material including thermoelectrics. The common belief currently held is that high-symmetry materials are usually good for thermoelectrics, leading to great efforts having historically been focused on GeTe alloys in a high-symmetry cubic structure. Here we show a slight reduction of crystal structure symmetry of GeTe alloys from cubic to rhombohedral, enabling a rearrangement in electronic bands for more transporting channels of charge carriers and many imperfections for more blocking centers of heat-energy carriers (phonons). This leads to the discovery of rhombohedral GeTe alloys as the most efficient thermoelectric materials to date, opening new possibilities for low-symmetry thermoelectric materials. Cubic GeTe thermoelectrics have been historically focused on, while this work utilizes a slight symmetry-breaking strategy to converge the split valence bands, to reduce the lattice thermal conductivity and therefore realize a record thermoelectric performance, all enabled in GeTe in a rhombohedral structure. This not only promotes GeTe alloys as excellent materials for thermoelectric power generation below 800 K, but also expands low-symmetry materials as efficient thermoelectrics

    Optimisation of Quantum Trajectories Driven by Strong-field Waveforms

    Get PDF
    Quasi-free field-driven electron trajectories are a key element of strong-field dynamics. Upon recollision with the parent ion, the energy transferred from the field to the electron may be released as attosecond duration XUV emission in the process of high harmonic generation (HHG). The conventional sinusoidal driver fields set limitations on the maximum value of this energy transfer, and it has been predicted that this limit can be significantly exceeded by an appropriately ramped-up cycleshape. Here, we present an experimental realization of such cycle-shaped waveforms and demonstrate control of the HHG process on the single-atom quantum level via attosecond steering of the electron trajectories. With our optimized optical cycles, we boost the field-ionization launching the electron trajectories, increase the subsequent field-to-electron energy transfer, and reduce the trajectory duration. We demonstrate, in realistic experimental conditions, two orders of magnitude enhancement of the generated XUV flux together with an increased spectral cutoff. This application, which is only one example of what can be achieved with cycle-shaped high-field light-waves, has farreaching implications for attosecond spectroscopy and molecular self-probing

    Carrier-envelope phase stability of hollow-fibers used for high-energy, few-cycle pulse generation

    Full text link
    We investigated the carrier-envelope phase (CEP) stability of a hollow-fiber setup used for high-energy, few-cycle pulse generation. Saturation of the output pulse energy is observed at 0.6 mJ for a 260 um inner-diameter, 1 m long fiber, statically filled with neon, with the pressure adjusted to achieve an output spectrum capable of supporting sub-4fs pulses. The maximum output pulse energy can be increased to 0.8mJ by using either differential pumping, or circularly polarized input pulses. We observe the onset of an ionization-induced CEP instability, which does not increase beyond an input pulse energy of 1.25 mJ due to losses in the fiber caused by ionization. There is no significant difference in the CEP stability with differential pumping compared to static-fill, demonstrating that gas flow in differentially pumped fibers does not degrade the CEP stabilization.Comment: 4 pages, 4 figure

    Attosecond streaking of photoelectron emission from disordered solids

    Full text link
    Attosecond streaking of photoelectrons emitted by extreme ultraviolet light has begun to reveal how electrons behave during their transport within simple crystalline solids. Many sample types within nanoplasmonics, thin-film physics, and semiconductor physics, however, do not have a simple single crystal structure. The electron dynamics which underpin the optical response of plasmonic nanostructures and wide-bandgap semiconductors happen on an attosecond timescale. Measuring these dynamics using attosecond streaking will enable such systems to be specially tailored for applications in areas such as ultrafast opto-electronics. We show that streaking can be extended to this very general type of sample by presenting streaking measurements on an amorphous film of the wide-bandgap semiconductor tungsten trioxide, and on polycrystalline gold, a material that forms the basis of many nanoplasmonic devices. Our measurements reveal the near-field temporal structure at the sample surface, and photoelectron wavepacket temporal broadening consistent with a spread of electron transport times to the surface
    corecore