488 research outputs found
Optimisation of Quantum Trajectories Driven by Strong-field Waveforms
Quasi-free field-driven electron trajectories are a key element of
strong-field dynamics. Upon recollision with the parent ion, the energy
transferred from the field to the electron may be released as attosecond
duration XUV emission in the process of high harmonic generation (HHG). The
conventional sinusoidal driver fields set limitations on the maximum value of
this energy transfer, and it has been predicted that this limit can be
significantly exceeded by an appropriately ramped-up cycleshape. Here, we
present an experimental realization of such cycle-shaped waveforms and
demonstrate control of the HHG process on the single-atom quantum level via
attosecond steering of the electron trajectories. With our optimized optical
cycles, we boost the field-ionization launching the electron trajectories,
increase the subsequent field-to-electron energy transfer, and reduce the
trajectory duration. We demonstrate, in realistic experimental conditions, two
orders of magnitude enhancement of the generated XUV flux together with an
increased spectral cutoff. This application, which is only one example of what
can be achieved with cycle-shaped high-field light-waves, has farreaching
implications for attosecond spectroscopy and molecular self-probing
Analysis of a model with a common source of CP violation
We work in a model where all CP violating phenomena have a common source. CP
is spontaneously broken at a large scale through the phase of a complex
singlet scalar. An additional singlet vector-like down-type quark
relates this high scale CP violation to low energy. We quantitatively analyze
this model in the quark sector. We obtain the numerical values of the
parameters of the Lagrangian in the quark sector for a specific ansatz of the
down-type quark mass matrix where the weak phase is generated
minimally. vertex will modify in presence of the extra vector-like
down-type quark. From the experimental lower bound of the partial decay width
we find out the lower bound of the additional down-type quark
mass. Tree level flavor changing neutral current appears in this model due to
the presence of the extra vector-like down-type quark. We give the range of
values of the mass splitting in system
using SM box, mediating tree level and mediating one loop diagrams
together for both . We find out the analytical expression for
in this model from standard box, and Higgs mediated penguin
diagrams for system, . From this we numerically
evaluate the decay width difference . We
also find out the numerical values of the CP asymmetry parameters and
for the decays and
respectively. We get the lower bound of the scale through the upper bound
of the strong CP phase.Comment: 20 pages, no figures New materials and references have been added.
Text has been modified. To be appear in J.Phys.
A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre
Over the past decade intense laser fields with a single-cycle duration and even shorter, subcycle multicolour field transients have been generated and applied to drive attosecond phenomena in strong-field physics. Because of their extensive bandwidth, single-cycle fields cannot be emitted or amplified by laser sources directly and, as a rule, are produced by external pulse compression—a combination of nonlinear optical spectral broadening followed up by dispersion compensation. Here we demonstrate a simple robust driver for high-field applications based on this Kagome fibre approach that ensures pulse self-compression down to the ultimate single-cycle limit and provides phase-controlled pulses with up to a 100 μJ energy level, depending on the filling gas, pressure and the waveguide length
Carrier-envelope phase stability of hollow-fibers used for high-energy, few-cycle pulse generation
We investigated the carrier-envelope phase (CEP) stability of a hollow-fiber
setup used for high-energy, few-cycle pulse generation. Saturation of the
output pulse energy is observed at 0.6 mJ for a 260 um inner-diameter, 1 m long
fiber, statically filled with neon, with the pressure adjusted to achieve an
output spectrum capable of supporting sub-4fs pulses. The maximum output pulse
energy can be increased to 0.8mJ by using either differential pumping, or
circularly polarized input pulses. We observe the onset of an
ionization-induced CEP instability, which does not increase beyond an input
pulse energy of 1.25 mJ due to losses in the fiber caused by ionization. There
is no significant difference in the CEP stability with differential pumping
compared to static-fill, demonstrating that gas flow in differentially pumped
fibers does not degrade the CEP stabilization.Comment: 4 pages, 4 figure
Attosecond streaking of photoelectron emission from disordered solids
Attosecond streaking of photoelectrons emitted by extreme ultraviolet light
has begun to reveal how electrons behave during their transport within simple
crystalline solids. Many sample types within nanoplasmonics, thin-film physics,
and semiconductor physics, however, do not have a simple single crystal
structure. The electron dynamics which underpin the optical response of
plasmonic nanostructures and wide-bandgap semiconductors happen on an
attosecond timescale. Measuring these dynamics using attosecond streaking will
enable such systems to be specially tailored for applications in areas such as
ultrafast opto-electronics. We show that streaking can be extended to this very
general type of sample by presenting streaking measurements on an amorphous
film of the wide-bandgap semiconductor tungsten trioxide, and on
polycrystalline gold, a material that forms the basis of many nanoplasmonic
devices. Our measurements reveal the near-field temporal structure at the
sample surface, and photoelectron wavepacket temporal broadening consistent
with a spread of electron transport times to the surface
Nova shema za izravno upravljanje momentom asinkronih motora napajanih iz trofaznog izmjenjivača
This paper presents a novel controller based on Direct Torque Control (DTC) strategy. This controller is designed to be applied in the control of Induction Motors (IM) fed with a three-level Voltage Source Inverter (VSI). This type of inverter has several advantages over the standard two-level VSI, such as a greater number of levels in the output voltage waveforms, lower dV/dt, less harmonic distortion in voltage and current waveforms and lower switching frequencies. In the new controller, torque and stator flux errors are used together with the stator flux angular frequency to generate a reference voltage vector. Experimental results of the novel system are presented and compared with those obtained for Classical DTC system employing a two-level VSI. The new controller is shown to reduce the ripple in the torque and flux responses. Lower current distortion and switching frequency of the semiconductor devices are also obtained in the new system presented.U ovome se članku opisuje novi regulator zasnovan na strategiji izravnog upravljanja momentom i razvijen za primjenu u upravljanju asinkronim motorima napajanim iz trorazinskih izmjenjivača napona. Taj tip izmjenjivača ima nekoliko prednosti u odnosu na standardne dvorazinske izmjenjivače napona, kao što je veći broj razina u izlaznom valnom obliku napona, niži du/dt, manja distorzija harmonika u valnim oblicima napona i struje i niže frekvencije komutacije. U novom regulatoru moment i pogreške u statorskom toku koriste se zajedno s kutnom frekvencijom statora za tvorbu referentne vrijednosti vektora napona. Eksperimentalni su rezultati novog sustava prikazani i uspoređeni s rezultatima klasičnog sustava koji koristi dvorazinski pretvarač napona. Novi regulator pokazuje smanjeni šum u odzivima momenta i toka motora. U predloženom je sustavu također postignuta i manja distorzija struje i manja frekvencija komutacije poluvodičkih sklopova
- …