4,990 research outputs found

    The Poincare' coset models ISO(d-1,1)/R^n and T-duality

    Get PDF
    We generalize a family of Lagrangians with values in the Poincar\'e group ISO(d-1,1), which contain the description of spinning strings in flat (d-1)+1 dimensions, by including symmetric terms in the world-sheet coordinates. Then, by promoting a subgroup H=R^n, n less than or equal to d, which acts invariantly from the left on the element of ISO(d-1,1), to a gauge symmetry of the action, we obtain a family of sigma-models. They describe bosonic strings moving in (generally) curved, and in some cases degenerate, space-times with an axion field. Further, the space-times of the effective theory admit in general T-dual geometries. We give explicit results for two non degenerate cases.Comment: LaTeX, 24 pages, no figure

    Geometry of Batalin-Vilkovisky quantization

    Full text link
    The present paper is devoted to the study of geometry of Batalin-Vilkovisky quantization procedure. The main mathematical objects under consideration are P-manifolds and SP-manifolds (supermanifolds provided with an odd symplectic structure and, in the case of SP-manifolds, with a volume element). The Batalin-Vilkovisky procedure leads to consideration of integrals of the superharmonic functions over Lagrangian submanifolds. The choice of Lagrangian submanifold can be interpreted as a choice of gauge condition; Batalin and Vilkovisky proved that in some sense their procedure is gauge independent. We prove much more general theorem of the same kind. This theorem leads to a conjecture that one can modify the quantization procedure in such a way as to avoid the use of the notion of Lagrangian submanifold. In the next paper we will show that this is really so at least in the semiclassical approximation. Namely the physical quantities can be expressed as integrals over some set of critical points of solution S to the master equation with the integrand expressed in terms of Reidemeister torsion. This leads to a simplification of quantization procedure and to the possibility to get rigorous results also in the infinite-dimensional case. The present paper contains also a compete classification of P-manifolds and SP-manifolds. The classification is interesting by itself, but in this paper it plays also a role of an important tool in the proof of other results.Comment: 13 page

    Free Fields Equations For Space-Time Algebras With Tensorial Momentum

    Get PDF
    Free field equations, with various spins, for space-time algebras with second-rank tensor (instead of usual vector) momentum are constructed. Similar algebras are appearing in superstring/M theories. The most attention is payed to the gauge invariance properties, particularly the spin two equations with gauge invariance are constructed for dimensions 2+2 and 2+4 and connection to Einstein equation and diffeomorphism invariance is established

    Towards SO(2,10)-Invariant M-Theory: Multilagrangian Fields

    Get PDF
    The SO(2,10) covariant extension of M-theory superalgebra is considered, with the aim to construct a correspondingly generalized M-theory, or 11d supergravity. For the orbit, corresponding to the 11d11d supergravity multiplet, the simplest unitary representations of the bosonic part of this algebra, with sixth-rank tensor excluded, are constructed on a language of field theory in 66d space-time. The main peculiarities are the presence of more than one equation of motion and corresponding Lagrangians for a given field and that the gauge and SUSY invariances of the theory mean that the sum of variations of these Lagrangians (with different variations of the same field) is equal to zero.Comment: Latex 16 pages, minor correction, To appear in Mod. Phys. Lett.

    Holographic repulsion and confinement in gauge theory

    Full text link
    We show that for asymptotically anti-deSitter backgrounds with negative energy, such as the AdS soliton and regulated negative mass AdS-Schwarzshild metrics, the Wilson loop expectation value in the AdS/CFT conjecture exhibits a Coulomb to confinement transition. We also show that the quark-antiquark (qqˉq \bar q) potential can be interpreted as affine time along null geodesics on the minimal string world sheet,and that its intrinsic curvature provides a signature of transition to confinement phase. The result demonstrates a UV/IR relation in that the boundary separation of the qqˉq \bar{q} pair exhibits an inverse relationship with the radial descent of the world sheet into the bulk. Our results suggest a generic (holographic) relationship between confinement in gauge theory and repulsive gravity, which in turn is connected with singularity avoidance in quantum gravity.Comment: 8 pages, 4 figure

    BRST Formulation of 4-Monopoles

    Get PDF
    A supersymmetric gauge invariant action is constructed over any 4-dimensional Riemannian manifold describing Witten's theory of 4-monopoles. The topological supersymmetric algebra closes off-shell. The multiplets include the auxiliary fields and the Wess-Zumino fields in an unusual way, arising naturally from BRST gauge fixing. A new canonical approach over Riemann manifolds is followed, using a Morse function as an euclidean time and taking into account the BRST boundary conditions that come from the BFV formulation. This allows a construction of the effective action starting from gauge principles.Comment: 18 pages, Amste

    Residues and World-Sheet Instantons

    Full text link
    We reconsider the question of which Calabi-Yau compactifications of the heterotic string are stable under world-sheet instanton corrections to the effective space-time superpotential. For instance, compactifications described by (0,2) linear sigma models are believed to be stable, suggesting a remarkable cancellation among the instanton effects in these theories. Here, we show that this cancellation follows directly from a residue theorem, whose proof relies only upon the right-moving world-sheet supersymmetries and suitable compactness properties of the (0,2) linear sigma model. Our residue theorem also extends to a new class of "half-linear" sigma models. Using these half-linear models, we show that heterotic compactifications on the quintic hypersurface in CP^4 for which the gauge bundle pulls back from a bundle on CP^4 are stable. Finally, we apply similar ideas to compute the superpotential contributions from families of membrane instantons in M-theory compactifications on manifolds of G_2 holonomy.Comment: 47 page

    Ising model with a boundary magnetic field - an example of a boundary flow

    Full text link
    In hep-th/0312197 a nonperturbative proof of the g-theorem of Affleck and Ludwig was put forward. In this paper we illustrate how the proof of hep-th/0312197 works on the example of the 2D Ising model at criticality perturbed by a boundary magnetic field. For this model we present explicit computations of all the quantities entering the proof including various contact terms. A free massless boson with a boundary mass term is considered as a warm-up example.Comment: 1+20 pages, Latex, 2 eps figures; v2: references adde

    Superstrings and Topological Strings at Large N

    Get PDF
    We embed the large N Chern-Simons/topological string duality in ordinary superstrings. This corresponds to a large NN duality between generalized gauge systems with N=1 supersymmetry in 4 dimensions and superstrings propagating on non-compact Calabi-Yau manifolds with certain fluxes turned on. We also show that in a particular limit of the N=1 gauge theory system, certain superpotential terms in the N=1 system (including deformations if spacetime is non-commutative) are captured to all orders in 1/N by the amplitudes of non-critical bosonic strings propagating on a circle with self-dual radius. We also consider D-brane/anti-D-brane system wrapped over vanishing cycles of compact Calabi-Yau manifolds and argue that at large NN they induce a shift in the background to a topologically distinct Calabi-Yau, which we identify as the ground state system of the Brane/anti-Brane system.Comment: 30 pages, some minor clarifications adde

    A Center-Symmetric 1/N Expansion

    Full text link
    The free energy of U(N) gauge theory is expanded about a center-symmetric topological background configuration with vanishing action and vanishing Polyakov loops. We construct this background for SU(N) lattice gauge theory and show that it uniquely describes center-symmetric minimal action orbits in the limit of infinite lattice volume. The leading contribution to the free energy in the 1/N expansion about this background is of O(N^0) rather than O(N^2) as one finds when the center symmetry is spontaneously broken. The contribution of planar 't Hooft diagrams to the free energy is O(1/N^2) and sub-leading in this case. The change in behavior of the diagrammatic expansion is traced to Linde's observation that the usual perturbation series of non-Abelian gauge theories suffers from severe infrared divergences. This infrared problem does not arise in a center-symmetric expansion. The 't Hooft coupling \lambda=g^2 N is found to decrease proportional to 1/\ln(N) for large N. There is evidence of a vector-ghost in the planar truncation of the model.Comment: 27 pages, 2 figures; extended and corrected version with additional material and reference
    • 

    corecore