7,178 research outputs found

    Decay widths of large-spin mesons from the non-critical string/gauge duality

    Full text link
    In this paper, we use the non-critical string/gauge duality to calculate the decay widths of large-spin mesons. Since it is believed that the string theory of QCD is not a ten dimensional theory, we expect that the non-critical versions of ten dimensional black hole backgrounds lead to better results than the critical ones. For this purpose we concentrate on the confining theories and consider two different six dimensional black hole backgrounds. We choose the near extremal AdS6 model and the near extremal KM model to compute the decay widths of large-spin mesons. Then, we present our results from these two non-critical backgrounds and compare them together with those from the critical models and experimental data.Comment: 21 pages and 3 figure

    Gravitational Backreaction Effects on the Holographic Phase Transition

    Full text link
    We study radion stabilization in the compact Randall-Sundrum model by introducing a bulk scalar field, as in the Goldberger and Wise mechanism, but (partially) taking into account the backreactions from the scalar field on the metric. Our generalization reconciles the radion potential found by Goldberger and Wise with the radion mass obtained with the so-called superpotential method where backreaction is fully considered. Moreover we study the holographic phase transition and its gravitational wave signals in this model. The improved control over backreactions opens up a large region in parameter space and leads, compared to former analysis, to weaker constraints on the rank N of the dual gauge theory. We conclude that, in the regime where the 1/N expansion is justified, the gravitational wave signal is detectable by LISA.Comment: 42 pages, 4 figures; v2: minor changes for the publicatio

    Heavy Quark Potential from Gauge/Gravity Duality: A Large D Analysis

    Full text link
    The heavy-quark potential is calculated in the framework of gauge/gravity duality using the large-D approximation, where D is the number of dimensions transverse to the flux tube connecting a quark and an antiquark in a flat D+2-dimensional spacetime. We find that in the large-D limit the leading correction to the ground-state energy, as given by an effective Nambu-Goto string, arises not from the heavy modes but from the behavior of the massless modes in the vicinity of the quark and the antiquark. We estimate this correction and find that it should be visible in the near-future lattice QCD calculations of the heavy-quark potential.Comment: 22 pages, 5 Figures. v2: references added, typos corrected and, Sec. 4 rewritten with an expanded non-perturbative discussion of the corrections to the Arvis potential arising from the massless modes near the boundary of the qcd strin

    Information Loss in Black Holes

    Full text link
    The question of whether information is lost in black holes is investigated using Euclidean path integrals. The formation and evaporation of black holes is regarded as a scattering problem with all measurements being made at infinity. This seems to be well formulated only in asymptotically AdS spacetimes. The path integral over metrics with trivial topology is unitary and information preserving. On the other hand, the path integral over metrics with non-trivial topologies leads to correlation functions that decay to zero. Thus at late times only the unitary information preserving path integrals over trivial topologies will contribute. Elementary quantum gravity interactions do not lose information or quantum coherence

    Holographic Meson Spectra in the Dense Medium with Chiral Condensate

    Full text link
    We study two 1/Nc1/N_c effects on the meson spectra by using the AdS/CFT correspondence where the 1/Nc1/N_c corrections from the chiral condensate and the quark density are controlled by the gravitational backreaction of the massive scalar field and U(1) gauge field respectively. The dual geometries with zero and nonzero current quark masses are obtained numerically. We discuss meson spectra and binding energy of heavy quarkonium with the subleading corrections in the hard wall model.Comment: 16 pages, 4 figure

    Ricci Flat Black Holes and Hawking-Page Phase Transition in Gauss-Bonnet Gravity and Dilaton Gravity

    Full text link
    It is well-known that there exists a Hawking-Page phase transition between a spherical AdS black hole and a thermal AdS space. The phase transition does not happen between a Ricci flat AdS black hole whose horizon is a Ricci flat space and a thermal AdS space in the Poincare coordinates. However, the Hawking-Page phase transition occurs between a Ricci flat AdS black hole and an AdS soliton if at least one of horizon coordinates for the Ricci flat black hole is compact. We show a similar phase transition betwen the Ricci flat black holes and deformed AdS solitons in the Gauss-Bonnet gravity and the dilaton gravity with a Liouville-type potential including the gauged supergravity coming from the spherical reduction of Dp-branes in type II supergravity. In contrast to Einstein gravity, we find that the high temperature phase can be dominated either by black holes or deformed AdS solitons depending on parameters.Comment: Latex, 17 pages without figure

    Holography and Unquenched Quark-Gluon Plasmas

    Full text link
    We employ the string/gauge theory correspondence to study properties of strongly coupled quark-gluon plasmas in thermal gauge theories with a large number of colors and flavors. In particular, we analyze non-critical string duals of conformal (S)QCD, as well as ten dimensional wrapped fivebrane duals of SQCD-like theories. We study general properties of the dual plasmas, including the drag force exerted on a probe quark and the jet quenching parameter. We find that these plasma observables depend on the number of colors and flavors in the ``QCD dual''; in particular, we find that the jet quenching parameter increases linearly with N_f/N_c at leading order in the probe limit. In the ten dimensional case we find a non trivial drag coefficient but a vanishing jet quenching parameter. We comment on the relation of this result with total screening and argue that the same features are shared by all known plasmas dual to fivebranes in ten dimensions. We also construct new D5 black hole solutions with spherical horizon and show that they exhibit the same features.Comment: 30 pages. v2: Comments in section 2 and references updated, a typo fixe

    Graviton n-point functions for UV-complete theories in Anti-de Sitter space

    Get PDF
    We calculate graviton n-point functions in an anti-de Sitter black brane background for effective gravity theories whose linearized equations of motion have at most two time derivatives. We compare the n-point functions in Einstein gravity to those in theories whose leading correction is quadratic in the Riemann tensor. The comparison is made for any number of gravitons and for all physical graviton modes in a kinematic region for which the leading correction can significantly modify the Einstein result. We find that the n-point functions of Einstein gravity depend on at most a single angle, whereas those of the corrected theories may depend on two angles. For the four-point functions, Einstein gravity exhibits linear dependence on the Mandelstam variable s versus a quadratic dependence on s for the corrected theory.Comment: 29 page

    Strings and Branes in Nonabelian Gauge Theory

    Get PDF
    It is an old speculation that SU(N) gauge theory can alternatively be formulated as a string theory. Recently this subject has been revived, in the wake of the discovery of D-branes. In particular, it has been argued that at least some conformally invariant cousins of the theory have such a string representation. This is a pedagogical introduction to these developments for non-string theorists. Some of the existing arguments are simplified.Comment: Reference adde
    corecore