2 research outputs found

    Mechanical and self-healing properties of cement paste containing incinerated sugarcane filter cake and Lysinibacillus sp. WH bacteria

    No full text
    Abstract Cement is the most widely used construction material due to its strength and affordability, but its production is energy intensive. Thus, the need to replace cement with widely available waste material such as incinerated black filter cake (IBFC) in order to reduce energy consumption and the associated CO2 emissions. However, because IBFC is a newly discovered cement replacement material, several parameters affecting the mechanical properties of IBFC-cement composite have not been thoroughly investigated yet. Thus, this work aims to investigate the impact of IBFC as a cement replacement and the addition of the calcifying bacterium Lysinibacillus sp. WH on the mechanical and self-healing properties of IBFC cement pastes. The properties of the IBFC-cement pastes were assessed by determining compressive strength, permeable void, water absorption, cement hydration product, and self-healing property. Increases in IBFC replacement reduced the durability of the cement pastes. The addition of the strain WH to IBFC cement pastes, resulting in biocement, increased the strength of the IBFC-cement composite. A 20% IBFC cement-replacement was determined to be the ideal ratio for producing biocement in this study, with a lower void percentage and water absorption value. Adding strain WH decreases pore sizes, densifies the matrix in ≤ 20% IBFC biocement, and enhances the formation of calcium silicate hydrate (C–S–H) and AFm ettringite phases. Biogenic CaCO3 and C–S–H significantly increase IBFC composite strength, especially at ≤ 20% IBFC replacement. Moreover, IBFC-cement composites with strain WH exhibit self-healing properties, with bacteria precipitating CaCO3 crystals to bridge cracks within two weeks. Overall, this work provides an approach to produce a "green/sustainable" cement using biologically enabled self-healing characteristics

    Unraveling the structural complexity of and the effect of calcination temperature on calcium phosphates derived from Oreochromis niloticus bones

    No full text
    In this study, the interplay between the structural complexity, microstructure, and mechanical properties of calcium phosphates (CaPs) derived from fish bones, prepared at various calcination temperatures, and their corresponding sintered ceramics was explored. Fourier-transform infrared analysis revealed that the calcined powders primarily consisted of hydroxyapatite (HAp) and carbonated calcium hydroxyapatite, with an increasing concentration of Mg-substituted β-tricalcium phosphate (β-TCP) as the calcination temperature was increased. X-ray diffraction patterns showed enhanced sharpness of the peaks at higher temperatures, indicating a larger crystallite size and improved crystallinity. The ceramics exhibited a significantly larger crystallite size and an increased concentration of the β-TCP phase. Rietveld analysis revealed a larger volume of the β-TCP phase in the ceramics than in their calcined powders; this could be attributed to a newly formed β-TCP phase due to the decomposition of HAp. Extended X-ray absorption fine structure analysis revealed the incorporation of Mg in the Ca2 site of HAp, Ca2 site of β-TCP, and Ca5 site of β-TCP, with a higher substitution of Mg in the Ca5 site of β-TCP at elevated temperatures. The mechanical properties of HAp ceramics can be improved by increasing the calcination temperature because of their improved relative density and dense porous structure at elevated temperatures. This comprehensive investigation sheds light on the phase evolution, microstructural changes, and consequential impact on the mechanical properties of CaPs derived from fish bones, thereby facilitating the development of tailored CaP ceramics for biomedical applications
    corecore