233,001 research outputs found

    Boolean Witt vectors and an integral Edrei-Thoma theorem

    Get PDF
    A subtraction-free definition of the big Witt vector construction was recently given by the first author. This allows one to define the big Witt vectors of any semiring. Here we give an explicit combinatorial description of the big Witt vectors of the Boolean semiring. We do the same for two variants of the big Witt vector construction: the Schur Witt vectors and the pp-typical Witt vectors. We use this to give an explicit description of the Schur Witt vectors of the natural numbers, which can be viewed as the classification of totally positive power series with integral coefficients, first obtained by Davydov. We also determine the cardinalities of some Witt vector algebras with entries in various concrete arithmetic semirings.Comment: Final version. To appear in Selecta Mat

    Ternary q-Virasoro-Witt Hom-Nambu-Lie algebras

    Full text link
    In this paper we construct ternary qq-Virasoro-Witt algebras which qq-deform the ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos using su(1,1)su(1,1) enveloping algebra techniques. The ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos depend on a parameter and are not Nambu-Lie algebras for all but finitely many values of this parameter. For the parameter values for which the ternary Virasoro-Witt algebras are Nambu-Lie, the corresponding ternary qq-Virasoro-Witt algebras constructed in this article are also Hom-Nambu-Lie because they are obtained from the ternary Nambu-Lie algebras using the composition method. For other parameter values this composition method does not yield Hom-Nambu Lie algebra structure for qq-Virasoro-Witt algebras. We show however, using a different construction, that the ternary Virasoro-Witt algebras of Curtright, Fairlie and Zachos, as well as the general ternary qq-Virasoro-Witt algebras we construct, carry a structure of ternary Hom-Nambu-Lie algebra for all values of the involved parameters

    Witt groups of sheaves on topological spaces

    Full text link
    This paper investigates the Witt groups of triangulated categories of sheaves (of modules over a ring R in which 2 is invertible) equipped with Poincare-Verdier duality. We consider two main cases, that of perfect complexes of sheaves on locally compact Hausdorff spaces and that of cohomologically constructible complexes of sheaves on polyhedra. We show that the Witt groups of the latter form a generalised homology theory for polyhedra and continuous maps. Under certain restrictions on the ring R, we identify the constructible Witt groups of a finite simplicial complex with Ranicki's free symmetric L-groups. Witt spaces are the natural class of spaces for which the rational intersection homology groups have Poincare duality. When the ring R is the rationals we show that every Witt space has a natural L-theory, or Witt, orientation and we identify the constructible Witt groups with the 4-periodic colimit of the bordism groups of Witt spaces. This allows us to interpret Goresky and Macpherson's L-classes of singular spaces as stable homology operations from the constructible Witt groups to rational homology.Comment: 38 pages, reformatted, minor corrections and changes as suggested by referee. To appear in Commentarii Mathematici Helvetici no. 8

    The basic geometry of Witt vectors, II: Spaces

    Get PDF
    This is an account of the algebraic geometry of Witt vectors and arithmetic jet spaces. The usual, "p-typical" Witt vectors of p-adic schemes of finite type are already reasonably well understood. The main point here is to generalize this theory in two ways. We allow not just p-typical Witt vectors but those taken with respect to any set of primes in any ring of integers in any global field, for example. This includes the "big" Witt vectors. We also allow not just p-adic schemes of finite type but arbitrary algebraic spaces over the ring of integers in the global field. We give similar generalizations of Buium's formal arithmetic jet functor, which is dual to the Witt functor. We also give concrete geometric descriptions of Witt spaces and arithmetic jet spaces and investigate whether a number of standard geometric properties are preserved by these functors.Comment: Final versio
    • …
    corecore