83 research outputs found

    Modifications of the hydrogen bond network of liquid water in a cylindrical SiO_2 pore

    Full text link
    We present results of molecular dynamics simulations of water confined in a silica pore. A cylindrical cavity is created inside a vitreous silica cell with geometry and size similar to the pores of real Vycor glass. The simulations are performed at different hydration levels. At all hydration levels water adsorbs strongly on the Vycor surface; a double layer structure is evident at higher hydrations. At almost full hydration the modifications of the confinement-induced site-site pair distribution functions are in qualitative agreement with neutron diffraction experiment. A decrease in the number of hydrogen bonds between water molecules is observed along the pore radius, due to the tendency of the molecules close to the substrate to form hydrogen-bonds with the hydrophilic pore surface. As a consequence we observe a substrate induced distortion of the H-bond tetrahedral network of water molecules in the regions close to the surface.Comment: Talk presented at "Physics of Liquids: Foundations, Highlights, Challenge", Murau Sept. 1998. To appear in J. Mol. Li

    Wick's theorem for q-deformed boson operators

    Get PDF
    In this paper combinatorial aspects of normal ordering arbitrary words in the creation and annihilation operators of the q-deformed boson are discussed. In particular, it is shown how by introducing appropriate q-weights for the associated ``Feynman diagrams'' the normally ordered form of a general expression in the creation and annihilation operators can be written as a sum over all q-weighted Feynman diagrams, representing Wick's theorem in the present context.Comment: 9 page

    Operator Method for Nonperturbative Calculation of the Thermodynamic Values in Quantum Statistics. Diatomic Molecular Gas

    Get PDF
    Operator method and cumulant expansion are used for nonperturbative calculation of the partition function and the free energy in quantum statistics. It is shown for Boltzmann diatomic molecular gas with some model intermolecular potentials that the zeroth order approximation of the proposed method interpolates the thermodynamic values with rather good accuracy in the entire range of both the Hamiltonian parameters and temperature. The systematic procedure for calculation of the corrections to the zeroth order approximation is also considered.Comment: 22 pages, 7 Postscript figures, accepted for publication in Journal of Physics

    Charge-density-wave instability in the Holstein model with quartic anharmonic phonons

    Full text link
    The molecular-crystal model, that describes a one-dimensional electron gas interacting with quartic anharmonic lattice vibrations, offers great potentials in the mapping of a relatively wide range of low-dimensional fermion systems coupled to optical phonons onto quantum liquids with retarded interactions. Following a non-perturbative approach involving non-Gaussian partial functional integrations of lattice degrees of freedom, the exact expression of the phonon-mediated two-electron action for this model is derived. With the help of Hubbard-Stratonovich transformation the charge-density-wave instability is examined in the sequel, with particular emphasis on the effect of the quartic anharmonic phonons on the charge-density-wave transition temperature.Comment: 12 pages, 3 figure

    Morbus Fabry. Klinische und pathologische Untersuchungen eines Falles

    No full text
    corecore