5 research outputs found

    Efficacy, safety, and side effects of oliceridine in acute postoperative pain, a protocol for a systematic review and meta-analysis

    No full text
    This will be the first meta-analysis on the efficacy, safety, and side effects of oliceridine on postoperative pain. Our aim with this work is to evaluate the clinical utility of this relatively new substance in a broad postoperative context. Oliceridine is a new so-called bias opioid that is approved for severe pain requiring an opioid. Due to its biased agonism, it is said to have fewer side effects than conventional opioids. This systematic review and meta-analysis will analyze the efficacy, safety, and side effects of oliceridine compared to placebo or morphine in acute postoperative pain for up to 72 hours. In January 2024, an extensive search in various databases will be performed without restrictions for randomized controlled trials with at least single blinding. After data extraction, data will be pooled and meta-analytic calculations performed. A random-effects model will be used. Dichotomous data will be presented as risk ratio and continuous data as standardized mean difference. Dose-dependent side effects will be evaluated with meta-regression. Heterogeneity will be assessed via the Q statistic and prediction interval in case of a sufficient number of included studies. Publication bias will be examined using funnel plot and Duval and Tweedie's trim and fill method

    Methazolamide reduces the AQP5 mRNA expression and immune cell migration

    No full text
    Sepsis is a life-threatening condition caused by the dysregulated host response to infection. Novel therapeutic options are urgently needed and aquaporin inhibitors could suffice as aquaporin 5 (Aqp5)\it (Aqp5) knockdown provided enhanced sepsis survival in a murine sepsis model. Potential AQP5 inhibitors provide sulfonamides and their derivatives. In this study, we tested the hypothesis that sulfonamides reduce AQP5 expression in different conditions. The impact of sulfonamides on AQP5 expression and immune cell migration was examined in cell lines REH and RAW 264.7 by qPCR, Western blot and migration assay. Subsequently, whether furosemide and methazolamide are capable of reducing AQP5 expression after LPS incubation was investigated in whole blood samples of healthy volunteers. Incubation with methazolamide (10−510^{−5} M) and furosemide (10−610^{−6} M) reduced AQP5\it AQP5 mRNA and protein expression by about 30% in REH cells. Pre-incubation of the cells with methazolamide reduced cell migration towards SDF1-α\alpha compared to non-preincubated cells to control level. Pre-incubation with methazolamide in PBMCs led to a reduction in LPS-induced AQP5\it AQP5 expression compared to control levels, while furosemide failed to reduce it. Methazolamide appears to reduce AQP5\it AQP5 expression and migration of immune cells. However, after LPS administration, the reduction in AQP5\it AQP5 expression by methazolamide is no longer possible. Hence, our study indicates that methazolamide is capable of reducing AQP5\it AQP5 expression and has the potential to be used in sepsis prophylaxis

    The aquaporin 3 polymorphism (rs17553719) is associated with sepsis survival and correlated with IL-33 secretion

    No full text
    Sepsis is a common life-threatening disease caused by dysregulated immune response and metabolic acidosis which lead to organ failure. An abnormal expression of aquaporins plays an important role in organ failure. Additionally, genetic variants in aquaporins impact on the outcome in sepsis. Thus, we investigated the polymorphism (rs17553719) and expression of aquaporin-3 (AQP3\it AQP3) and correlated these measurements with the survival of sepsis patients. Accordingly, we collected blood samples on several days (plus clinical data) from 265 sepsis patients who stayed in different ICUs in Germany. Serum plasma, DNA, and RNA were then separated to detect the promotor genotypes of AQP3\it AQP3 mRNA expression of AQP3 and several cytokines. The results showed that the homozygote CC genotype exhibited a significant decrease in 30-day survival (38.9%) compared to the CT (66.15%) and TT genotypes (76.3%) (p\it p = 0.003). Moreover, AQP3\it AQP3 mRNA expression was significantly higher and nearly doubled in the CC compared to the CT (p\it p = 0.0044) and TT genotypes (p\it p = 0.018) on the day of study inclusion. This was accompanied by an increased IL-33 concentration in the CC genotype (day 0: p\it p = 0.0026 and day 3: p\it p = 0.008). In summary, the C allele of the AQP3\it AQP3 polymorphism (rs17553719) shows an association with increased AQP3\it AQP3 expression and IL-33 concentration accompanied by decreased survival in patients with sepsis

    AQP3 and AQP9

    No full text
    Sepsis involves an immunological systemic response to a microbial pathogenic insult, leading to a cascade of interconnected biochemical, cellular, and organ-organ interaction networks. Potential drug targets can depict aquaporins, as they are involved in immunological processes. In immune cells, AQP3 and AQP9 are of special interest. In this study, we tested the hypothesis that these aquaporins are expressed in the blood cells of septic patients and impact sepsis survival. Clinical data, routine laboratory parameters, and blood samples from septic patients were analyzed on day 1 and day 8 after sepsis diagnosis. AQP expression and cytokine serum concentrations were measured. AQP3 mRNA expression increased over the duration of sepsis and was correlated with lymphocyte count. High AQP3 expression was associated with increased survival. In contrast, AQP9 expression was not altered during sepsis and was correlated with neutrophil count, and low levels of AQP9 were associated with increased survival. Furthermore, AQP9 expression was an independent risk factor for sepsis lethality. In conclusion, AQP3 and AQP9 may play contrary roles in the pathophysiology of sepsis, and these results suggest that AQP9 may be a novel drug target in sepsis and, concurrently, a valuable biomarker of the disease

    Exploring the relationship between HCMV serostatus and outcomes in COVID-19 sepsis

    No full text
    Background:\bf Background: Sepsis, a life-threatening condition caused by the dysregulated host response to infection, is a major global health concern. Understanding the impact of viral or bacterial pathogens in sepsis is crucial for improving patient outcomes. This study aimed to investigate the human cytomegalovirus (HCMV) seropositivity as a risk factor for development of sepsis in patients with COVID-19. Methods:\bf Methods: A multicenter observational study enrolled 95 intensive care patients with COVID-19-induced sepsis and 80 post-surgery individuals as controls. HCMV serostatus was determined using an ELISA test. Comprehensive clinical data, including demographics, comorbidities, and 30-day mortality, were collected. Statistical analyses evaluated the association between HCMV seropositivity and COVID-19 induced sepsis. Results:\bf Results: The prevalence of HCMV seropositivity did not significantly differ between COVID-19-induced sepsis patients (78%) and controls (71%, p = 0.382) in the entire cohort. However, among patients aged ≤\leq60 years, HCMV seropositivity was significantly higher in COVID-19 sepsis patients compared to controls (86% vs 61%, respectively; p = 0.030). Nevertheless, HCMV serostatus did not affect 30-day survival. Discussion:\bf Discussion: These findings confirm the association between HCMV seropositivity and COVID-19 sepsis in non-geriatric patients. However, the lack of an independent effect on 30-day survival can be explained by the cross-reactivity of HCMV specific CD8+CD8^{+} T-cells towards SARS-CoV-2 peptides, which might confer some protection to HCMV seropositive patients. The inclusion of a post-surgery control group strengthens the generalizability of the findings. Further research is needed to elucidate the underlying mechanisms of this association, explore different patient populations, and identify interventions for optimizing patient management. Conclusion:\bf Conclusion: This study validates the association between HCMV seropositivity and severe COVID-19-induced sepsis in non-geriatric patients, contributing to the growing body of evidence on viral pathogens in sepsis. Although HCMV serostatus did not independently influence 30-day survival, future investigations should focus on unraveling the intricate interplay between HCMV, immune responses, and COVID-19. These insights will aid in risk stratification and the development of targeted interventions for viral sepsis
    corecore