33 research outputs found
Prevalence of maternal smoking and environmental tobacco smoke exposure during pregnancy and impact on birth weight: retrospective study using Millennium Cohort
<p>Abstract</p> <p>Background</p> <p>Meta-analyses of studies investigating the impact of maternal environmental tobacco smoke (ETS) on birth weight have not produced robust findings. Although, ante natal ETS exposure probably reduces infant's birth weights, the scale of this exposure remains unknown. We conducted a large, cohort study to assess the impact of ETS exposure on birth weight whilst adjusting for the many factors known to influence this.</p> <p>Method</p> <p>Retrospective study using interview data from parents of 18,297 children born in 2000/2001 and living in the UK 9 months afterwards (the Millennium Cohort Survey). Comparison of birth weight, sex and gestational age specific (SGA) z score, birth before 37 weeks and birth weight < 2.5 Kg (LBW) in infants born to women exposed to: i) no tobacco smoke, ii) ETS only and iii) maternal smoking whilst pregnant.</p> <p>Results</p> <p>13% of UK infants were exposed to ETS and 36% to maternal smoking ante natally. Compared to no ante natal tobacco smoke exposure, domestic ETS lowered infants' adjusted mean birth weights by 36 g (95% CI, 5 g to 67 g) and this effect showed a dose-response relationship. ETS exposure also caused non-significant increases in the adjusted risks of Low Birth Weight (<2.5 Kg) [OR 1.23 (95% CI, 0.96 to 1.58) and premature birth [OR 1.21 (95% CI, 0.96 to 1.51)], whilst the impacts of maternal smoking were greater and statistically significant.</p> <p>Conclusion</p> <p>UK prevalences of domestic ETS exposure and maternal smoking in pregnancy remain high and ETS exposure lowers infants' birth weights.</p
Triclosan Disrupts SKN-1/Nrf2- Mediated Oxidative Stress Response in C. elegans and Human Mesenchymal Stem Cells
Triclosan (TCS), an antimicrobial chemical with potential endocrine-disrupting properties, may pose a risk to early embryonic development and cellular homeostasis during adulthood. Here, we show that TCS induces toxicity in both the nematode C. elegans and human mesenchymal stem cells (hMSCs) by disrupting the SKN-1/Nrf2-mediated oxidative stress response. Specifically, TCS exposure affected C. elegans survival and hMSC proliferation in a dose-dependent manner. Cellular analysis showed that TCS inhibited the nuclear localization of SKN-1/Nrf2 and the expression of its target genes, which were associated with oxidative stress response. Notably, TCS-induced toxicity was significantly reduced
by either antioxidant treatment or constitutive SKN-1/Nrf2 activation. As Nrf2 is strongly associated with aging and chemoresistance, these findings will provide a novel approach to the identification of therapeutic targets and disease treatment
An immunoassay for the detection of triclosan-O-glucuronide, a primary human urinary metabolite of triclosan
Triclosan-O-glucuronide (TCSG) is one of the primary urinary metabolites of the antibacterial compound triclosan or TCS that is found in many personal care products and consumer goods. We have developed a competitive, indirect heterologous ELISA for the detection of the target TCSG in urine. Such an ELISA for TCSG could be developed as a useful tool to measure this important biomarker of human exposure to TCS. Immunogens were prepared by conjugating TCSG to thyroglobulin, via heterobifunctional cross-linkers AEDP or 3-[(2-aminoethyl)dithio] propionic acid•hydrochloride and TFCS or N-[ε-trifluoroacetylcaproyloxy]succinimide ester. The coating antigen was prepared by the direct conjugation of TCSG to bovine serum albumin. Antibodies raised in rabbits 2619, 2621 (immunogen TCSG-AEDP-Thy) and 2623 (immunogen TCSG-TFCS-Thy) and the coating antigen were screened and characterized to determine their optimal concentrations. The optimized ELISA, developed with antibody 2621, gave an IC(50) value of 2.85 ng/mL, with the linear range (IC(20) – IC(80)) determined to be 2.6 – 24.8 ng/mL. Selectivity of the assay was assessed by measuring cross-reactivity of antibody 2621 to related congeners such as the aglycone TCS, triclosan-O-sulfate, triclocarban, a polybrominated diphenyl ether derivative and 3-phenoxybenzyl alcohol glucuronide. There was virtually no recognition by antibody 2621 to any of these cross-reactants